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Abstract. We discuss the implementation of an off-line air quality model
(AQM). More precisely, how to design a code for an AQM that runs ef-
ficiently on a variety of computer platforms. We implemented our ideas
in an AQM benchmark and we show the performance of this benchmark
on the different architectural paradigms. A second subject of the paper
is the I/O performance of the Cray T3E for an off-line model. We imple-
mented the required I/O in different ways and show that none of these
results in a truly scalable I/O.

1 Introduction

Atmospheric chemistry and transport models are used to simulate the change
in the chemical composition of the atmosphere caused by changes in emissions,
e.g., to determine the strategies needed to satisfy air quality requirements. The
mathematical model of atmospheric chemistry and transport is a system of
time-dependent partial differential equations in three space dimensions of the
advection-diffusion-reaction type. To simulate with such a model real-life atmo-
spheric chemistry/transport processes on a temporal and spatial scale of interest,
first of all efficient and robust numerical algorithms are needed. A second critical
factor concerns computer capacity, both with respect to CPU power and with
respect to memory (see, for example, the review article from Peters et al. [9]).

In a joint project with the TNO Institute for Environment, Energy and Pro-
cess Innovation we are developing a three-dimensional regional atmospheric dis-
persion model. The current TNO LOTOS (LOng Term Ozone Simulation) model
(see [6]) is used for a variety of environmental studies related to air pollution,
but it is limited in the sense that it uses only four (physically determined) ver-
tical layers and in the sense that a model change, for instance in the chemistry,
requires much (implementational) effort. Moreover, the code is not developed for
modern computer architectures, i.e., it is not easily vectorizable or parallelizable.
The aim of the project is to significantly enhance the suitability, the accuracy
and the computational efficiency of LOTOS by developing from scratch a fully
three-dimensional Air Quality Model (AQM). Just like the old model, the new
LOTOS model [5] is driven by an emission data base and analyzed meteoro-
logical data (a so-called ‘off-line’ model). To solve the mathematical model the
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Eulerian grid approach is used. The numerical algorithms for space and time
discretization aim at positivity, mass conservation, stability and efficiency. The
computational model is implemented with two basic ideas in mind. Firstly, it
should be a flexible code, i.e., it should be easy to add processes (like cumu-
lus convection), to use different solution methods, and to replace the chemistry
model. Secondly, the model is intended to run on different computer platforms
and perhaps even on a heterogeneous network.

In this paper we will focus on the latter task: how to make an implementation
of an off-line air quality model that is efficient on the most advanced computer
systems like vector/parallel supercomputers and massively parallel distributed-
memory systems and on (a cluster of) workstations. To have an easy-to-use
problem at hand to evaluate various numerical algorithms we developed a 3D
prototype of a regional atmospheric chemistry and transport model. We dis-
cretized this prototype on a computational grid with numerical algorithms that
are either the ones that we intend to use in our full LOTOS model or which
are typical for the kind of solution methods suitable for air quality modeling.
With this computational model we studied in previous projects (see [10, 3]) the
parallelization of the transport operators and the chemistry of an AQM on a
massively parallel architecture, viz., the Cray T3D. As a result of these and
other experiments we developed a benchmark code for our prototype which uses
as basic parallelization strategy the SPMD (Single Program Multiple Data) ap-
proach through domain decomposition. The horizontal domain is divided into
as many partitions as the numbers of processors available and on each of the
processors a regional (sub)model is computed. The implementation of the basic
regional model is done in data parallel / array syntax programming style to fa-
cilitate automatic vectorization and possibly also parallelization. For a precise
description of the prototype and its benchmark implementation we refer to [1,
4]. In this paper we will show performance results with our AQM benchmark
code on the successor of the Cray T3D, the Cray T3E, and on other platforms,
such as a vector/parallel shared memory system (Cray C90) and a cluster of
workstations (SGI O2).

A second subject of the paper is I/O related. A real AQM like LOTOS
contains a considerable amount of I/O operations. Therefore, we added to our
benchmark a ‘realistic’ amount of reading data from and writing output to disk.
With this code we studied the I/O performance of the Cray T3E for our AQM.
We implemented the I/O both in the master/slave approach, i.e., one PE per-
forms all necessary I/O and takes care of the distribution and gathering of the
data, and using parallel I/O.

Finally, we will draw some conclusions from the experiences with our proto-
type and we will discuss the computational design of the full LOTOS model.

2 Platforms

We compared the performance of our benchmark on the three different ar-
chitectural paradigms, viz., a vector/parallel shared memory architecture (a
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Cray C90 with 12 processors), a massively parallel distributed memory system
(a Cray T3E), and a cluster of SGI O2 workstations coupled in a star-shaped
ATM network. The difference in performance of these platforms is not caused
by the clock frequency, which is for all platforms more or less the same. Also the
peak performance per node is not significantly different. For 1 CPU of the C90
it is 1 Gflop/s (having 2 vectorpipes and chaining possibilities), for 1 PE of the
T3E it is 0.6 Gflop/s (2 Flops/cycle), and even for the O2 it is 0.1 Gflop/s (all
64 bit Flops). But for the C90, and for vector machines in general, it is easy to
reach half the peak performance, whereas for the other type architectures with
their restrictive hierarchical types of memory (registers, primary and secondary
cache, memory, disk) it is difficult to keep the CPU busy. For example, on the
T3E with its relatively small cache it may be possible to get somewhere near
the peak performance using blocked matrix algorithms, but for our application
where the use of memory is inherently more or less random one reaches often less
than 5% of the peak. For our application the only reason to choose distributed
memory architectures is the scalability of the systems, and not only the scalabil-
ity of the execution time with the number of PEs but even more the scalability
of the memory. Very large models can often be only executed on distributed
memory systems due to the inherent limitations of the (shared) memory in vec-
tor/parallel systems. Clusters of workstations have the same advantage but there
the interconnecting network will often be the bottleneck, because it is slow and
even more important because it is not dedicated. However, the price of such a
platform is of course much lower.

3 Performance Benchmark

We ran our benchmark on a 32 × 32 horizontal grid with 32 layers in the ver-
tical (so with concentration vectors of dimension [32,32,32,66]). For the explicit
message passing we make use of PVM routines. Using another message passing
interface, e.g., MPI, will not influence our findings significantly. We want to em-
phasize that we do not make changes in our code other than using two different
‘calling’ programs, one for the unpartitioned model and one for the horizontally
partitioned model. We do not add directives to increase the performance and
we use ‘standard’ compiler options, with the exception of the T3E where we
compiled with ‘−O3,split2,unroll2’ since that resulted in a performance gain of
ca. 40%. For the C90 we use −Zv (vectorization) and −Zp (autotasking + vec-
torization), and for the O2: −O. In this way we test not only the quality of the
hardware, but also the quality of the compilers and the user-friendliness of the
system.

As normalizing computational unit we take the performance on 1 CPU of the
C90 (compiler option−Zv). Our benchmark runs there at a speed of 500 Mflop/s,
which is half the peak performance. It should be noted that the performance
could have been better if the array syntax would not have been rewritten by
the compiler to loops of which only the inner one was vectorized. Especially, the
performance for smaller (sub)models could have benefited from this.
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Table 1. Performance of the AQM benchmark on various platforms. First column:
CPU performance on 1 processor normalized with respect to 1 CPU of C90 (−Zv).
Other columns: Speed-up on N processors with respect to time on N/2 processors. For
the C90 (−Zp) autotasking results are obtained with the Cray tool ATExpert, both
the ‘optimal’ Amdahl (left entry) and the ‘dedicated’ (right entry) figures are given.
For the SGI O2 the left entry in a column denotes the maximum CPU time and the
right entry the wall clock time.

Speed-up
a C90(−Zv)/a 2 4 8 16 32

C90(−Zp) 0.8 1.9 1.8 1.9 1.7 1.8 1.5
C90(PVM) 0.8 1.9 1.9 1.6
T3E 0.05 2.1 2.0 2.1 2.4 2.3
O2 0.03 0.008 2.0 5.6 2.2 1.9 1.9 1.4 2.1 1.8

In Table 1 we show the performance of the benchmark on multiple proces-
sors of the C90, once for the complete model using autotasking to divide the
workload over the processors, i.e., parallelizing at loop level, and once using the
PVM program. The parallelization overhead is in both cases significant. On one
processor as well the (unpartitioned) autotasked program as the PVM program
show a performance drop of approximately 20%. As can be expected the PVM
program scales better with the number of processors, but memory contention
and a decreasing vector speed prevent an optimal scalability. On the Cray T3E,
on the contrary, the scalability is even superlinear with the number of processors
(due to cache effects), but here the performance on 1 PE is only 4% of the peak
performance. One can calculate from the figures in the table that it needs 16 PEs
of the T3E to outperform 1 processor of the C90. Experiments we performed on
a 64 × 64 horizontal grid show that the scalability with the modelsize is also
perfect, i.e., a run on N PEs for the 64×64 grid is as expensive as a run on N/4
PEs for the 32× 32 grid. Finally, we present the results for a cluster of worksta-
tions, the SGI O2’s coupled with an ATM network. Here one can clearly see the
effect of the use of ‘virtual’ memory: the memory on these workstations is not
large enough to contain a complete model, so the computer is more swapping
than calculating, resulting in a wall clock time which is four times as large as
the CPU time (and has a clear day/night rhythm: during daytime it is about 6
times as large). The speed-up in wall clock time using two O2’s instead of one
is therefore huge: a factor 5.6. The performance is then approximately the same
as for 1 PE of the T3E. However, the scalability of a cluster of workstations
is much less. The CPU time can also decrease sometimes superlinearly due to
cache effects, but this does not show up in the wall clock time.

4 I/O experiments on Cray T3E

We consider our 3D prototype a good approximation of a full-scale implemen-
tation of an AQM in the numerical and the computational sense. On the other
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hand, a real AQM like LOTOS contains a considerable amount of I/O opera-
tions such as the reading of the meteo data (advective flow fields, temperature,
wet deposition, relative humidity, etc.), the reading of the emission data and
of the boundary conditions obtained from a larger model, and the logging of
concentration vectors at specific times.

In [8] Dabdub and Seinfeld discuss the parallelization of the I/O in atmo-
spheric models in a foreman (host node) / workers (slave nodes) paradigm. They
state that when all computational operators have been parallelized, the I/O be-
comes the bottleneck, since all ‘workers’ must wait idle when the ‘foreman’ is
reading and writing data to the file system. They also claim that the strategy
where all workers perform their own I/O is a disastrous idea, since the perfor-
mance of the I/O operations will be severely hindered by the operating system
overhead, which is for instance the case for a cluster of workstations with one
file-server, or for the Cray T3D, where the filesystem resides on the front-end.
However, if the workstations in the cluster have their own disk or in the case
of the Cray T3E where only a small number of nodes share an I/O channel
(architectures with a so-called scalable I/O architecture) it is a very promising
strategy to let all ‘workers’ perform their own I/O.

In the domain decomposition approach which we used for our AQM bench-
mark code all nodes perform the same task, namely the computations for a local
model on a subdomain, i.e., we did not adopt the master/slave paradigm. With
this implementation we studied the I/O performance of the Cray T3E for our
AQM. We implemented the I/O both in the master/slave approach, i.e., one PE
performs all necessary I/O and takes care of the distribution and gathering of
the data, and using parallel I/O.

4.1 Description of system

For our experiments we used the Cray T3E AC80/128 of HPαC, the Centre for
High Performance Applied Computing, of the Delft University of Technology. In
the sequel, if we refer to the Cray T3E, we will refer to this specific configuration.

The Cray T3E has 80 DEC Alpha processors running at 300 MHz. Every
processor has 128 Mb memory. Four PEs, a system building block, share one
I/O port. I/O devices are connected to the I/O ports via a GigaRing [11], a
1200 Mbyte/s total raw bandwidth channel. The sustainable I/O bandwidth is
267 Mbyte/s per PE [2]. The Cray T3E has two GigaRings. However, the user
file systems reside on twelve DD-308 Fibre Channel disks, all connected via one
Fibre Channel Node to one GigaRing. For our I/O experiments we used the
striped /home filesystem: sixteen physical partitions evenly divided over eight
disks, in turn evenly divided over the four channels of the Fibre Channel Node.
The file allocation strategy is round robin, so without any user interaction, this is
supposed to create maximum I/O throughput if the system is accessing multiple
files.

A single DD-308 disk drive has a sustained transfer rate of 8–12 Mbyte/s (cf.
the online man page disksfcn(7)). Clearly, this is the limiting bandwidth.
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4.2 Description of I/O in model

Since LOTOS is an off-line model we need as input (analyzed) meteo data. At
given points in time we have to read at least four different three-dimensional
fields: one for the temperature and three for the different components of the
wind velocity. We also have to read several two-dimensional fields such as the
surface pressure. In our I/O test we are using a 64×64×32 computational grid.
We read each time step four three-dimensional fields and five two-dimensional
fields. As output we write each time step all 66 computed concentrations (three-
dimensional data). The amount of I/O can be seen as a maximum. In most cases
a meteo time step consists of a few integration steps and the number of output
concentrations will often be smaller, say in the order of 10. In ‘real models’ also
the amount of computational work is larger, due to operations needed on the
input data and due to the addition of subgrid processes to the model.

Because of the relatively low precision of the input data and because of the
relatively low precision requirements on the output data, we use REAL*4 for the
I/O. Computations are done with precision REAL*8. For optimal performance we
use in our experiments unformatted I/O; although our I/O is sequential in nature
we use direct access files to avoid record blocking; furthermore, we use maximal
record sizes (64× 64× 32× 4 bytes for three-dimensional fields and 64× 64× 4
bytes for two-dimensional fields). For the record sizes we use in our I/O requests,
we actually reach 10 Mbyte/s on average when using one disk(partition).

In a separate experiment, using assign(3f) (the preferred Fortran library
interface to the assign(1) command) to create a 4-way user-level striped file, we
showed that it was possible to reach 40 Mbyte/s writing a three-dimensional field.
Another separate experiment, using the cachea FFIO (Flexible File I/O [7])
layer with appropriate buffers in order to allow read-ahead, showed that it was
possible to read a three-dimensional field at 40 Mbyte/s from a 4-way user-level
striped file. In the previous two experiments we used 4-way striping because the
Fibre Channel Node has four channels. We should be able to get a speed-up
of eight, using all available disks. Using user-level striping is an easy way to
increase the I/O speed. Knowing the disk configuration and using the setf(1)
command it is even possible to initialize data files using striping before getting
them on the Cray T3E.

4.3 I/O experiments

There are many possible strategies to perform I/O on a parallel computer. For
the input of the meteo data we chose the most simple approach: do the input
from a single PE. Clearly, this is the most portable approach: it is possible on
every parallel architecture and it is not necessary to divide the data up into
multiple files before reading. The disadvantage is that it does not scale. Apart
from reading the data we have to reorder the data according to the domain
decomposition and to scatter the data across the PEs. Not only the reading
time does not scale, but also the reordering time and scatter time do not scale.
To stay completely portable, we did not use user-level striping of the input files.
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For the output we tried three different approaches:

1. The similar portable approach as for the input: gather all concentrations on
one PE, reorder them in one three-dimensional field, and do the output from
one single PE.

2. The parallel output approach: every PE writes its own subdomain concen-
trations to a private file using standard Fortran output. The disadvantage
is that the data has to be merged outside the scope of this program. This is
not necessarily a big disadvantage: if we need the data for visualization, say,
then some packages are able to collect their data from multiple files.

3. The parallel asynchronous approach: every PE writes it own subdomain
concentrations to a private file using asynchronous BUFFER OUT requests,
where a PE starts an output request and immediately can continue doing
computations. This approach has the same disadvantage as the previous
approach. Strictly speaking, BUFFER OUT is not standard Fortran, so this
approach is not portable.

In Table 2 we show the CPU time (column CPU) of our model without doing
any I/O. For the I/O we show the minimum, average and maximum wall clock
times. Column I shows the input-only wall clock time, and columns I/O, I/PO,
I/PAO show the combined input/output wall clock times for the standard out-
put, parallel output, and parallel asynchronous output approach, respectively.
The wall clock times for the I/O are determined by subtracting the CPU time
from the measured wall clock times including the I/O. Because of the memory
requirements, it is not possible to run our simulation on less than 4 PEs.

Table 2. wall clock times in seconds for I/O on the T3E.

# PEs CPU
I I/O I/PO I/PAO

min avg max min avg max min avg max min avg max
4 293 11.9 13.0 18.4 70.8 78.7 100.6 38.4 52.2 72.7 8.1 10.8 18.3
8 142 2.7 3.5 5.1 70.0 72.4 81.6 42.0 47.8 64.8 8.3 10.3 13.1

16 69 2.8 3.7 4.6 70.0 82.7 103.6 47.9 51.8 60.1 10.0 11.1 13.8
32 34 3.3 3.9 4.8 70.1 83.4 91.9 43.4 51.2 71.7 11.5 12.4 13.6
64 14 2.9 3.0 3.3 80.7 80.7 80.7 57.0 57.0 57.0 13.2 14.1 15.6

From Table 2 we see a significant difference between minimum and maximum
times. This is because we are dealing with shared physical devices. Disks always
have seek times, but some I/O requests also have to wait until requests from
other jobs on other PEs are finished. Isolated timing of a single I/O request that
normally takes only 0.3 s showed times up to 5 s.

For the input we see an anomalous behavior for 4 processors, where the time
to read the data takes more time than the combined time for input and parallel
asynchronous output. We have no explanation for this, yet. Since the time to do
the input on 64 PEs only takes 20% of the wall clock time of the total job, we
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are not interested in investigating other options (of course parallel asynchronous
input would be the winner), so we settle for the portable standard input (without
even using user-level striped data files).

For the portable output we see a combined input/output time of 70 s, say.
This is what we might expect: the input reads 4 three-dimensional fields (ne-
glecting the two-dimensional fields) and here we write an additional 66 three-
dimensional fields. This is 70/4 times more I/O and that is approximately re-
flected by the increase in the wall clock time. As we expected, the combined I/O
time does not scale. Since the combined I/O time is almost three times as expen-
sive as the CPU time on 64 PEs, we tried the following two other approaches.

For the parallel output every processor writes to its own private file so we
might hope for a parallel speed-up limited by the maximum of the number of PEs
and the number of disks, in our case eight. However, we only see a performance
gain of 30–50% probably due to the synchronous I/O and the resulting I/O
contention. On 64 PEs the combined I/O time still is four times as expensive as
the CPU time.

If we compare the input times with the combined input and parallel asyn-
chronous output times, we see that we are not able to overlap the output and
computations plus necessary communications completely. The reason for this
is unclear: it should have been possible looking at the amount of I/O and the
sustained average I/O rates. Doing a separate experiment, where we only wrote
the output files without doing any computation/communication at all (just exe-
cuting a ‘sleep’ statement), we were able to overlap output and ‘computations’
completely.

Again we might have hoped for a parallel speed-up limited by the maximum
of the number of PEs and the number of disks, but we do not see a performance
gain going from 4 to 8 PEs. We also see that the combined I/O time slightly
increases as the number of PEs increases. This must be due to I/O contention.
On 64 PEs the combined I/O time is about as much as the CPU time. This
seems acceptable, especially since 64 PEs give rise to small subdomains with a
maximum amount of I/O. Moreover, it is the most efficient way to handle the
output.

The final conclusion is probably the most disappointing one: although the
Cray T3E has a scalable I/O architecture, the I/O does not scale. Of course this
is due to the limited number of disks, but on the other hand we should have seen
a speed-up going from 4 to 8 PEs when doing output.

5 Discussion

In this paper we evaluated the performance of our AQM benchmark code on three
different computer platforms: a vector/parallel shared memory architecture, a
massively parallel distributed memory system, and a cluster of workstations.
The AQM benchmark [1] is composed of the following components:
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– A 3D prototype of an atmospheric transport/chemistry model consisting of
horizontal advection, vertical diffusion, and a state-of-the-art ozone chem-
istry scheme.

– Numerical methods aiming at positivity, mass conservation, stability, and
efficiency. The methods used in the code are either the ones we actually will
use in our full model or which are typical with respect to computational and
memory requirements for numerical methods used in AQM’s.

– A code based on the SPMD approach for parallelization. The horizontal do-
main of the regional model is partitioned and the submodels are distributed
over the PEs. The underlying program is implemented using array syntax
constructs to facilitate automatic vectorization and possibly also paralleliza-
tion.

The results of our evaluation are not surprising: For real computer speed one
should use a dedicated shared memory vector/parallel architecture or a dis-
tributed memory architecture in case of memory constraints. Both are expensive.
Much cheaper and somewhat competitive is a number of coupled workstations.

We want to emphasize that adding diffusion or vertical advection will not
influence the trend of our findings as long as the horizontal processes will be
calculated explicitly.

The second part of our paper discusses possible implementations on the
Cray T3E of the necessary I/O in a real AQM. In contrast to the expectations
raised by the advertising slogan ‘the Cray T3E has a scalable I/O architecture’,
I/O does not scale on the T3E. Scalability is of course limited by the number of
disks (8 in our case), but we do not even find a speed-up going from 4 to 8 PEs
when doing output. There is also an anomalous behavior doing only input on
4 PEs, taking more time than combined input/output on 4 PEs. Furthermore,
we are not able to fully exploit asynchronous I/O in the sense that we are not
able to fully overlap I/O and computations/communications, whereas I/O and
‘sleep’ overlap completely. Clearly, as on most platforms, asynchronous I/O is
the most efficient way to do I/O on the Cray T3E.

With respect to the implementation of the full 3D LOTOS model we draw
the following conclusions from the experiments described in this paper:

– To avoid divergence of different implementations aimed at different computer
platforms it is highly recommendable to have one implementation of LOTOS.
The experiments with our benchmark code on various platforms show that
this is possible without loosing efficiency.

– I/O experiments on the Cray T3E show that
• The necessary time to read the input data for LOTOS will be small

compared to the computational time.
• On the other hand, the output can have a significant influence on the

‘through-put’ time if one really wants to write all concentrations at every
time step to file, which is for instance the case when an AQM is coupled
to a powerful visualization / steering tool.
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– The (almost) portable implementation of parallel asynchronous I/O will be
an efficient choice on all architectures and will result in negligible I/O times
on ‘shared nothing’ architectures where every processor has its own memory
and its own disk.
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