
Chapter 5

Vectorisation and
Parallelisation of
Algorithms

Contributed by Walter Hoffmann, Walter Lioen,
Margreet Louter, Nicolay Petkov, Herman te Riele,
Ben Sommeijer, Henk van der Vorst, and Dik Winter

5.1 General

In this chapter vectorisation and parallelisation of various algorithms will be
discussed. In Section 5.1, general concepts concerning performance and data or-
ganisation are treated, followed by the introduction by examples of the widely-
used vectorisation/parallelisation techniques recursive doubling, cyclic reduc-
tion, divide-and-conquer, and domain decomposition. In Section 5.2 we will
discuss seven representative classes of numerical algorithms and in Section 5.3
two representative classes of non-numerical algorithms. These algorithms play
a role in various application areas. Section 5.4 concludes this chapter with the
description of some systolic algorithms.

5.1.1 Definitions

The speed of vector and parallel computers is often expressed in Mflop/s: the
number of Million floating point operations per second. If a vector or parallel
processor has a clock cycle time of c nanoseconds (e.g. c = 6 for the Cray Y/MP)
and if one result per clock cycle is produced (which is usually the case for the
operations +, −, and ∗), then the speed is 1000/c Mflop/s. However, such a

1

2

peak performance is difficult to reach in practice because of all kinds of overhead
involved.

When we compare the execution times of a serial and a vector/parallel com-
puter, the speed-up Sp is defined as the quotient T1/Tp, where T1 is the serial,
and Tp the vector/parallel execution time. On a parallel computer with p in-
dependent processors we would hope that Tp ∼ T1/p, i.e., we aim for a linear
speed-up Sp = O(p). This is not always the case, since it may be impossible to
use all p processors effectively. In the following table we give typical speed-ups
for a parallel machine with p processors [38]. Here, k is a machine-dependent
constant, independent of p.

Sp algorithms with this speed-up
kp matrix computations, mesh calculations

kp/ log p sorting, tridiagonal systems,
linear recurrence relations, polynomial evaluation

k log p searching
k certain non-linear recurrence relations

The efficiency Ep is defined as the quotient Sp/p. Ep measures how busy the
parallel processors are during the computation. The longer the processors are
idle or carry out extra calculations introduced by the parallelisation of the al-
gorithm, the smaller Ep.

On various architectures, the arithmetic operations may be executed in three
different modes, viz., scalar, parallel, and vector- or pipelined. Consider, for
example, the addition of two vectors of floating-point zi = xi+yi, (i = 1, . . . , n).
The operation of adding a pair of floating-point numbers xi, yi may be divided
into four sub-operations (this is a somewhat simplified model), viz.,

– compare the exponents,

– shift,

– add mantissae, and

– normalise.

Suppose that each sub-operation takes one clock cycle.
In scalar mode the additions of the components of the vectors x and y are done
one after the other, so that the computation of the vector z takes 4n clock
cycles.
In parallel mode, if p processors are available, p components of the vectors can
be added at the same time, so that the total time for z is about 4n/p clock
cycles (assuming n ≥ p).
The way a vector computer operates can be compared with the principle of
an assembly-line: the four sub-operations can be carried out in parallel. This
means that, after a start-up time of three clock cycles, during each subsequent

3

clock cycle the four different sub-operations are carried out concurrently on
four different components of the vector z. The following table gives, for the
four different sub-operations, the components of the vector z which are treated
during clock cycles 1, 2, So after clock cycle 4, z1 is ready, after clock cycle
5, z2, and so on. It follows that the total time to compute z in vector mode is
n+ 3 clock cycles.

clock cycle compare shift add normalise just finished
1 z1

2 z2 z1

3 z3 z2 z1

4 z4 z3 z2 z1

5 z5 z4 z3 z2 z1

6 z6 z5 z4 z3 z2

· · · · · ·

Comparing the three different modes, we see that in vector mode a speed-up of
about a factor of 4 can be reached compared with scalar mode, and in parallel
mode a speed-up of a factor p compared with scalar mode.

Obviously, if we can express our algorithm in terms of long vectors, or in
terms of independent parts which can be executed concurrently on different
processors, we can obtain a considerable time gain in the execution of our job.
Vectorisation and parallelisation are the terms used to describe these activities.

5.1.2 Performance, Amdahl’s law

Vector and parallel computers generally can show a much higher performance
than scalar computers for algorithms that are sufficiently well vectorisable and/or
parallelisable. Various techniques for vectorisation and parallelisation are dis-
cussed in Section 5.1.4. Here we shall discuss some performance issues. Usually,
not all our computations can be vectorised and/or parallelised. Suppose that
75% of the operations in our job are vectorisable or parallelisable and that 25%
is not, so that the latter part of the job has to be executed in scalar mode. Then,
consequently, the speed-up factor we can obtain by vectorisation/parallelisation
is bounded above by 4, no matter how well we are able to vectorise/parallelise.
Amdahl’s law quantifies this phenomenon as follows [41].

Suppose a certain algorithm requires N serial flops (floating-point opera-
tions), and suppose that a positive fraction α of them, i.e., αN flops can be
executed with a vector speed of v Mflop/s on a given vector computer. The
remainder is done with scalar speed, say s Mflop/s, where s is much smaller
than v. For the total execution time T we get

T =
αN

v
+

(1− α)N
s

= N

(
α

v
+

1− α
s

)
µsec.

4

This time is always larger than N(1−α)/s µsec, no matter how large we manage
to choose v. For the speed R of the algorithm (the number of flops divided by
the time in µsec.) we obtain

R = 1
/(

α

v
+

1− α
s

)
Mflop/s.

This is Amdahl’s law in simplified form. For the Cray-1, we have v = 150
and s = 5. For α = 0 we get R = 5. In order to double this speed we need
α = 15/29, and to get a speed-up of 10 we need α = 27/29. In general we can
conclude from this that in order to get a good performance the fraction of the
computational work which is vectorisable should be close to 1.

For a parallel computer suppose that the fraction α of the computation is
parallelisable and that the fraction 1−α is “essentially serial”, i.e., not amenable
to any speed-up on a parallel machine. Then we would expect

Tp = (1− α)T1 + αT1/p

so for the overall speed-up we find

Sp =
1

1− α+ α/p
≤ 1

1− α,

i.e., the speed-up is bounded, and not a linear function of p. This could be used as
an argument against parallelisation. However, what it shows is that the speed-
up is bounded as we increase the number of processors for a fixed problem. In
practice, it is more likely that we want to solve larger problems as the number of
processors in our computer increases, because the wish to solve large problems is
a primary motivation for building large parallel machines. Let N be a measure
for the problem size. For many problems it is reasonable to assume that the
essentially scalar fraction decreases as the inverse of the problem size, so that
1 − α ≤ k/N for some constant k. Suppose furthermore that N increases at
least linearly with p, with the same constant k, i.e., N ≥ kp. Then it follows
that (1− α)p ≤ 1 so that

Sp =
p

(1− α)p+ α
≥ p

1 + α
≥ p

2
.

Thus we get a linear speed-up, with efficiency Ep ≥ 1
2 .

5.1.3 Data organisation

In algorithms for parallel processing, the organisation and the dynamic arrange-
ment of the data can play a decisive role. Let us consider an extremely simplified
example of an MIMD computer with three processors P1, P2 and P3, each of
which has access to three storage locations. Suppose that the elements of a 3×3
matrix A = (aij) are stored in their “natural” order, as shown below:

5

P1 P2 P3

a11 a12 a13

a21 a22 a23

a31 a32 a33

So, P1 has access to a11, a21, and a31, and P2 and P3 to the second and third
column of A, respectively. However, P1 does not have access to the second and
third column, and so on. Then, parallel operation is possible on the rows and
the main diagonal of A, but not on the columns of A. However, the following
skew arrangement enables us to operate also on the columns:

P1 P2 P3

a11 a12 a13

a23 a21 a22

a32 a33 a31

Some general results concerning conflict-free storage access in array processors
are given by [32]

A related more realistic problem, a so-called memory bank conflict, may rise
due to the fact that memories in large vector computers are split up in banks,
which have a so-called bank latency time. This means that when an element
is loaded from a memory bank, it is not possible to load another element from
the same bank in the next few clock cycles. For example, suppose we have an
8-bank machine and a vector is stored in memory as follows: the elements with
index 8m + n, 0 ≤ n ≤ 7, are stored in bank number n. Suppose the bank
latency time is three clock cycles. Then, if we need the elements with indices
0, 1, 2, . . . there will be no conflict and the speed of loading is one vector element
per clock cycle. However, if we need the elements with indices 0, 4, 8, . . . there
will be a bank conflict and the speed of loading will be two elements per three
cycles. If we need the elements with indices 0, 8, 16, . . . the loading speed will
only be one element per three clock cycles. A remedy against such conflicts
would be to store the elements in some skewed order. Of course, the optimal
storage strategy depends very much on the particular problem at hand.

5.1.4 Techniques: recursive doubling, cyclic reduction, div-
ide-and-conquer, domain decomposition

Quite a number of techniques are known for generating vector and parallel algo-
rithms. One important distinction should be made in this respect: the number
of available processors in a parallel computer is limited or not. The latter as-
sumption occurs in theoretical studies which yield results like: a non-singular
n× n matrix can be inverted in O(log2 n) time, by using O(n4) processors [6].
The former case is more practical, since it is usually concerned with a particular
processor with a given number of parallel processing elements, or a pipelined
processor with fixed characteristics like clock cycle time, start-up time, memory

6

bank cycle time. In this section we discuss the techniques of recursive doubling,
cyclic reduction, divide-and-conquer for realistic computer architectures.

Recursive doubling is a powerful method of generating parallel algorithms.
The basic idea is to separate a computational job repeatedly into two indepen-
dent parts of equal complexity which can then be computed in parallel. For
example,

N∑
i=1

ai =
n∑
i=1

ai +
N∑

i=n+1

ai, n = bN/2c,

and by further application of this splitting, the sum can be computed in dlogNe
steps using dN/2e processors. For a vector computer, this may be implemented
in Fortran 90 as follows (A(N1:N2) is the vector consisting of the N2−N1+1
array elements A(N1), A(N1+1), . . . , A(N2)).

WHILE n > 1 DO

m1 = n/2

m2 = (n + 1)/2

a(1:m1) = a(1:m1) + a(m2+1:n)

n = m2

END DO

If an addition of two vectors of length N on a vector computer takes a+ bN
clock cycles (a is the start-up time), and if scalar addition takes s clock cycles,
then the times for the sequential algorithm and for the parallel version are
approximately sN and a log2N + bN cycles, respectively. Comparing these two
times we can compute the approximate turning point for which the parallel
version becomes faster than the sequential one.

Recursive doubling is applicable to a large number of instances on shared-
memory systems. The table below is taken from [38]. Theoretically, most of
the recurrences mentioned there can be computed in O(logN) time if O(N)
processors are available. However, actual implementation is needed to show the
real gain obtainable with this technique.

Function Description
Xi = Xi−1 + ai sum the elements of a vector
Xi = Xi−1 ∗ ai multiply the elements of a vector
Xi = min(Xi−1, ai) find the minimum
Xi = max(Xi−1, ai) find the maximum
Xi = aiXi−1 + bi first order linear recurrence, inhomogeneous
Xi = aiXi−1 + biXi−2 second order linear recurrence
Xi = aiXi−1 + biXi−2 + . . . any order linear recurrence
Xi = (aiXi−1 + bi)/(ciXi−1 + di) first order rational fraction recurrence
Xi = ai + bi/Xi−1 special case of the above recursion
Xi =

√
(X2

i−1 + a2
i) vector norm

7

Another example of recursive doubling occurs in the solution of bidiagonal linear
systems Ax = b, where

A =

1
a2 1

a3 1
· ·
· ·
aN−1 1

aN 1

, x =

x1

x2

x3

·
·

xN−1

xN

, b =

b1
b2
b3
·
·

bN−1

bN

.

This system arises in the solution of tridiagonal systems of equations (cf.
Section 5.2.1). The standard solution method is given by the linear recursion:

x1 = b1,
xi = bi − ai ∗ xi−1, i = 2, 3, . . . , N.

Some (scalar) improvement can be obtained by loop-unrolling, but this recursion
as it stands clearly is not vectorisable neither parallelisable.

A recursive doubling technique for solving this system reads as follows. Left
multiplication by the matrix −A+ 2I yields the equation A′x = b′ where

A′ =

1
0 1
a′3 0 1

a′4 0 1
· · ·
· · ·
· · ·
a′N 0 1

,

with obvious values of a′i (i = 3, 4, . . . , N) and b′i (i = 1, 2, . . . , N). In fact this
step amounts to replacing xi−1 in the right-hand-side of the expression for xi by
the same expression for xi−1 (for i = 2, 3, . . . , N), so that now xi is expressed
in xi−2. With this recursion we can, starting from x1, generate the values of
x3, x5, . . ., and starting from x2 (= b2 − a2b1) we can independently, hence in
parallel, generate x4, x6, So this can be done on a two-processor machine.
For a four-processor machine, we again left-multiply with the matrix −A′ + 2I

8

to obtain the equation A′′x = b′′, where

A′′ =

1
0 1
0 0 1
0 0 0 1
a′′5 0 0 0 1

a′′6 0 0 0 1
a′′7 0 0 0 1

· · · · ·
· · · · ·

,

and now we can generate the four sequences xi, x4+i, x8+i, . . ., for i = 1, 2, 3, 4
in parallel. Repeating this process at most dlog2Ne times eliminates all the
unknowns and yields the solution in the vector b. On a parallel processor with
N processing elements, this would yield the solution in about log2N time-steps.
However, the total number of operations in this parallel algorithm is much larger
than that in the serial version and, even though the operations now are all vector
operations, the actual performance on a vector computer (like the Cray-1) is still
worse than the loop-unrolled version. Only for special parallel computers this
technique may be profitable.

The idea of cyclic reduction is closely related to recursive doubling, but this
technique is more amenable to vectorisation. For simplicity, assume that N is
even. The above substitution trick is applied now only to the variables with odd
index. This yields, for i = 1, 2, . . . , N/2,

x2i = b2i − a2ix2i−1

= b2i − a2i(b2i−1 − a2i−1x2i−2)
= b̃2i − ã2ix2i−2

and we now have a recursion for the variables with even index and the original
recursion has been halved at the expense of some substitution work. Computing
the coefficients b̃2i and ã2i requires the vector operations

b̃j = bj − ajbj−1

ãj = −ajaj−1
, j = 2, 4, . . . , N.

Next, the recursion of length N/2 has to be executed on the variables with even
index. This is halve the original scalar work. Finally, the variables with odd
index can be computed from those with even index with the vector operation

xi = bi − aixi−1, i = 3, 5, . . . , N − 1.

This step of halving the scalar work can be repeated if more than two processors
are available, each time reducing the number of scalar operations at the expense
of increasing the number of vector operations. Van der Vorst [41] has analysed

9

these (and other) techniques for solving bidiagonal systems on various vector
computers.

We will illustrate divide-and-conquer techniques by an algorithm of Cuppen
[7] for computing eigenvalues of a symmetric tridiagonal matrix T which we
assume to be 2n× 2n. Write it as a sum

T =
[
T1 0
0 T2

]
+ ρxxT

of a block diagonal matrix with tridiagonal blocks T1 and T2, and a rank-1
matrix ρxxT which is non-zero only in the four entries at the intersection of
rows and columns n and n+ 1. Now we can compute the eigendecompositions
T1 = Q1Λ1Q

T
1 and T2 = Q2Λ2Q

T
2 in parallel on two processors. This yields the

partial eigendecomposition for T[
Q1 0
0 Q2

]
·
([

Λ1 0
0 Λ2

]
+ ρzzT

)
·
[
QT

1 0
0 QT

2

]
where z = diag(QT

1 , Q
T
2)x. So to compute the complete eigendecomposition of T ,

we need to compute the eigendecomposition QΛQT of the matrix diag(Λ1,Λ2)+
ρzzT which is a diagonal matrix plus a rank-1 update. Fortunately, this can
be done very rapidly (for details, see [7]) and we finally have found the full
eigendecomposition

T = (diag(Q1, Q2)Q)Λ(diag(Q1, Q2)Q)T.

If four processors are available, this algorithm can be applied recursively to find
the eigendecompositions of T1 and T2, and so on. For details, see [7].

Domain decomposition almost speaks for itself: a computational domain,
e.g. on which a partial differential equation has to be solved, is split into subdo-
mains and each subdomain is assigned to a processor. Each processor solves the
computational subproblem on its own subdomain and next the solutions found
have to be “matched” on the boundaries of the subdomains. Often some iter-
ations have to be performed in order to let the different solutions converge on
overlapping boundaries. One critical problem is to split up the computational
domain in such a way that all processors get equally large computational tasks
to perform on their respective subdomains.

10

5.2 Numerical algorithms

5.2.1 Tridiagonal systems

The usual sequential method to solve a tridiagonal system Ax = b is to de-
compose the matrix A into the product of a lower bidiagonal matrix L and an
upper bidiagonal matrix U , and then solve Ly = b in a forward sweep, followed
by solving Ux = y in a backward sweep. Both sweeps are linear recursions, for
which one could resort to one of the techniques of recursive doubling or cyclic
reduction, as described in Section 5.1.4. The performance obtainable in this
way is not very spectacular. Better results can be obtained if many indepen-
dent tridiagonal systems have to be solved at the same time. This occurs, for
example, in the numerical solution of the 3-D shallow water equations [15].

Exercise 5.1 Design an efficient algorithm to solve the n×n unit lower bidiag-
onal systems A(k)x(k) = b(k), k = 1, . . . ,m, where m� n, on a vector computer.
2

Another divide-and-conquer type technique for solving tridiagonal systems
was studied by Wang [43]; it is a “partition” method. The system is first
partitioned into subsystems, after which elimination proceeds simultaneously on
all subsystems by elementary row transformations until finally A is diagonalised.
We will illustrate it by an example of a tridiagonal 8× 8 system Ax = b, where

A =

a1 d1 |
c2 a2 d2 |

c3 a3 d3 |
c4 a4 | d4

− − − − + − − − −
c5 | a5 d5

| c6 a6 d6

| c7 a7 d7

| c8 a8

Figure 5.1: The original tridiagonal matrix A

We assume we have two parallel processors.

(a) Partition the matrix into 4 × 4 block tridiagonal form, as shown in Figure
5.1.

(b) (Elimination of the lower diagonals in the diagonal blocks.) Eliminate c2, c6
simultaneously on the two processors, then eliminate c3, c7 simultaneously,
followed by c4, c8. The matrix is now triangular except for the fourth
column. The f ’s shown in Figure 5.2 are non-zero fill-ins created during
the elimination.

11

(c) (Elimination of the upper diagonals in the diagonal blocks, except for d3

and d7.) Next, eliminate d2, d6 simultaneously, followed by d1, d5, and
then d4. This leaves us with a diagonal matrix, except for the fourth and
eighth columns, as shown in Figure 5.2. The g’s are fill-ins created during
this step.

(d) The matrix is triangularised by the elimination of c5, f6, f7, f8.

(e) The matrix is diagonalised by the elimination of d7, g6, g5, g4; d3, g2, g1.

a1 g1 |
a2 g2 |

a3 d3 |
a4 | g4

− − − − + − − − −
c5 | a5 g5

f6 | a6 g6

f7 | a7 d7

f8 | a8

Figure 5.2: The matrix A after elimination of the lower (step (b)) and upper
diagonals (step (c)) in the diagonal blocks.

Exercise 5.2 Describe the Wang algorithm for a matrix of order n, partitioned
in p × p-blocks, assuming that n is divisible by p with n

p = k ≥ 2, and that k
processors are available. 2

In [42] Van der Vorst and Dekker have studied suitable variants of the method
of Wang for different vector computers and they have presented upper bounds
for their performance and some actually observed performances in a Fortran
environment.

5.2.2 Blocked algorithms

Introduction

For architectures having a memory hierarchy, the ratio of floating-point opera-
tions to data movement is in general not high enough to make efficient reuse of
data that reside in cache or local memory. Therefore, it is often preferable to
partition matrices into blocks and to perform the computation by matrix-matrix
operations on the blocks. This approach, however, requires a different organi-
sation of the computations. In this section we describe two different algorithms
for the Cholesky decomposition, one based on column partition and one based

12

on a block partition. For both algorithms an implementation is given written
in terms of the BLAS.

The BLAS, a set of basic linear algebra subprograms (introduced in Chapter
4), has become an important tool to obtain high performance on supercomput-
ers while preserving program portability. Nowadays, optimised machine-specific
implementations of the BLAS are provided by vendors of high-performance com-
puters, as part of their standard run-time libraries. As a consequence, programs
coded in terms of the BLAS can achieve near-peak performance on many high-
performance computers, although they are still written in portable Fortran 77.
Moreover, by using the BLAS it is possible to exploit parallelism in a trans-
parent way suited for all kinds of machine architectures. Optimised versions of
the BLAS have been installed not only on most supercomputers, but also on
mainframes and workstations. So, when you prepare a code on your workstation
which is meant to run on a super, you can already start by using the BLAS and
have a good chance to achieve a high degree of efficiency on your workstation,
too.

In the Appendix we list a Level 2 BLAS implementation of the Cholesky
decomposition and an implementation written in terms of Level 3 BLAS kernels.
As mentioned before, the performance of the Level 2 BLAS operations is limited
by the rate of data movement between different levels of memory. The Level
2 BLAS performs only O(n2) floating-point operations on O(n2) data, whereas
the Level 3 BLAS performs O(n3) operations on O(n2) data. Performance
expressed in Mflop/s achieved for both implementations on an Alliant FX/4 is
listed. The optimal blocksize is machine-dependent.

Cholesky decomposition

The Cholesky factorisation of a positive definite symmetric matrix A is given
by

A = LLT

where L is a lower triangular matrix. Since A is positive definite, pivoting is
not necessary to ensure or improve numerical stability. The general step for the
Cholesky factorisation looks like

for · · ·
for · · ·

for · · ·
aij = aij − lik · akj (lik = aik/akk)

and we are free to place i, j, and k in the outer, middle and inner loop. This
yields six different forms, viz., ijk, ikj, jik, jki, kij and kji, which all have the
same number of floating-point operations but different data access and updating
patterns.

13

At first sight it is not easy to recognise how we can write this factorisation
in terms of the BLAS. Therefore, we describe the decomposition as follows A11

A21 A22

A31 A32 A33

 =

 L11

L21 L22

L31 L32 L33

 LT
11 LT

21 LT
31

LT
22 LT

32

LT
33

Suppose L11, L21 and L31 were already calculated in previous steps, then L22

and L32 can be obtained by multiplying L and LT and comparing corresponding
elements in L · LT and A:

L21L
T
21 + L22L

T
22 = A22

L31L
T
21 + L32L

T
22 = A32

(5.1)

Note that we have not mentioned yet how the matrix A has been partitioned.
Two cases can be distinguished:

– (A22, A32)T is a single column vector. In that case one column at a time is
updated.

– (A22, A32)T is a submatrix of nb columns and those nb columns are updated
simultaneously.

The first case can be described in terms of Level 2 BLAS, the second one in
terms of the Level 3 BLAS as is illustrated below. All BLAS subroutines used
have prefix S , which means that they work with REAL or SINGLE PRECISION
numbers. Similar versions with prefix D for DOUBLE PRECISION numbers are
available.

Level 2 BLAS implementation

Suppose in previous steps the elements of L11, L21 and L31 have already been
calculated. In case A22 and L22 are single elements we proceed as follows:

– compute the innerproduct (by calling the Level 1 BLAS function SDOT)L21L
T
21

and subtract this value from A22;

– next, since L22 is a single element, L22 becomes the square root of this value.

From the second equation of (5.1) we compute L32 as follows:

– compute the matrix-vector product L31L
T
21 and subtract the result from A32

by means of the BLAS-2 subroutine SGEMV;

– divide the elements of vector L32 by the value of L22, by using SSCAL.

The main part of the computation is performed by the Level 2 BLAS subroutine
SGEMV. At each step one column is updated, but whether the jik or the jki-
variant is applied depends on the vendor implementation of SGEMV, which, at
its turn, is dependent on the machine architecture.

14

Level 3 BLAS implementation

Again we suppose that L11, L21 and L31 have been calculated in previous steps.
We describe how to update a block of nb columns. For that purpose A and L
are subdivided, such that A22 is a symmetric matrix of order nb and L22 is a
lower triangular matrix of the same order. From the first equation of (5.1) we
now obtain L22 as follows:

– compute A′22 ← A22 − L21.L
T
21, which corresponds to a symmetric rank-k

update. The operation can be performed by calling the BLAS subroutine
SSYRK.

– next, solve L22 from L22.L
T
22 = A′22, i.e., perform the Cholesky decomposition

on a block matrix of order nb. This can be carried out by calling, for
instance, the Level 2 BLAS implementation discussed above.

The second equation of (5.1) delivers L32 as follows:

– call the Level 3 BLAS subroutine SGEMM to multiply the matrix L31 by LT
21

and to subtract the result from A32: A′32 ← A32 − L31 · LT
21.

– next, solve L32 from L32 ·LT
22 = A′32, where LT

22 is an upper triangular matrix,
by calling the BLAS 3 subroutine STRSM.

Performance of blocked and non-blocked algorithm

It turns out that the performance of the blocked version is better than the
non-blocked version on a wide range of high-performance vector and parallel
machines. As an example we give some figures for the Alliant FX/4:

n non-blocked nb = 32 nb = 64
100 4.91 5.44 5.10
200 7.67 10.62 9.46
300 8.14 12.70 12.20
400 8.14 13.83 11.17
500 8.36 14.86 14.01

Performance in Mflop/s of the Cholesky decomposition on an Alliant FX/4.

Exercise 5.3 Compute the number of Mflop/s of a blocked and non-blocked
code for the Cholesky decomposition for several matrix orders and several
nb values. The original LAPACK codes (non-blocked SPOTF2.F and blocked
SPOTRF.F) can be obtained by sending an E-mail to netlib@ornl.gov with the
body:

send spotf2.f from lapack

15

send spotrf.f from lapack

You will obtain the sources (and some auxiliary sources which are called by
SPOTF2 and SPOTRF). 2

Appendix

Here, we list Level 2 and 3 BLAS implementations for matrices that are stored
in the lower part of the array A. The sources have been taken from the LAPACK
subroutine SPOTF2 and SPOTRF. The description of the specific calls to BLAS is
briefly commented.

SUBROUTINE SLLT2(n, a, lda , info)

*

* Level 2 BLAS version (non-blocked)

*

* .. Scalar Arguments ..

INTEGER info, lda, n

* ..

* .. Array Arguments ..

REAL a(lda, *)

* ..

*

* Purpose

* =======

*

* SLLT2 computes the Cholesky factorisation of a real symmetric

* positive definite matrix stored in the lower part of the array a.

*

* .. Parameters ..

REAL one, zero

PARAMETER (one = 1.0E+0, zero = 0.0E+0)

* ..

* .. Local Scalars ..

INTEGER j

* ..

* .. External BLAS Functions and Subroutines ..

REAL SDOT

EXTERNAL SDOT

EXTERNAL SGEMV, SSCAL

* ..

* .. Intrinsic Functions ..

INTRINSIC SQRT

* ..

* .. Executable Statements ..

*

* First compute L(1,1) and test for non-positive-definiteness.

16

*

IF(a(1,1) .LE. zero) GO TO 30

a(1,1) = SQRT(a(1,1))

*

DO 10 j = 2, n

*

* Update elements j:n of column j-1.

C ..

C BLAS SGEMV computes the matrix-vector product

C BLAS

C BLAS a[j:n,j-1] - a[j:n,1:j-2] * Transpose(a[j-1,1:j-2])

C BLAS

C BLAS SGEMV stores the result into a[j:n,j-1].

C ..

*

CALL SGEMV(’Transpose’, n-j+1, j-2, -one, a(j, 1), lda,

+ a(j-1, 1), lda, one, a(j, j-1), 1)

*

* Scale elements j:n of column j-1.

C ..

C BLAS SSCAL multiplies vector a[j:n,j-1] by the reciprocal of the

C BLAS diagonal element a[j-1,j-1].

C ..

*

CALL SSCAL(n-j+1, one/a(j-1, j-1), a(j, j-1), 1)

*

* Update a(j,j).

C ..

C BLAS SDOT computes the innerproduct of a[j,1:j-1] x a[j,1:j-1].

C ..

*

a(j,j) = a(j,j) -

+ SDOT(j-1, a(j, 1), lda, a(j, 1), lda)

*

* Compute L(j,j) and test for non-positive-definiteness.

*

IF(a(j,j) .LE. zero)

+ GO TO 30

a(j,j) = SQRT(a(j,j))

10 CONTINUE

GO TO 40

*

30 CONTINUE

info = j

*

40 RETURN

*

17

* End of SLLT2

*

END

The source of SLLTB has been derived from the LAPACK subroutine SPOTRF.

SUBROUTINE SLLTB(n, nb, a, lda, info)

*

* Level 3 BLAS version (blocked)

*

* .. Scalar Arguments ..

INTEGER info, lda, n, nb

* ..

* .. Array Arguments ..

REAL a(lda, *)

* ..

*

* Purpose

* =======

*

* SLLTB computes the Cholesky factorisation of a real symmetric

* positive definite matrix stored in the lower part of the array a.

*

* .. Parameters ..

REAL one

PARAMETER (one = 1.0E+0)

* ..

* .. Local Scalars ..

INTEGER j, jb

* ..

* .. External Subroutines ..

EXTERNAL SGEMM, SLLT2, SSYRK, STRSM

* ..

* .. Intrinsic Functions ..

INTRINSIC MIN

* ..

* .. Executable Statements ..

*

* Factor the first diagonal block a[1:jb,1:jb] by calling the

* non-blocked factorisation subroutine SLLT2.

*

j = 1

jb = MIN(nb,n)

CALL SLLT2(jb, a(1,1), lda, info)

IF(info .NE. 0) GO TO 30

*

* Do for each successive blocked column ...

*

18

DO 20 j = nb + 1, n, nb

*

* Update subdiagonal block.

C ..

C BLAS SGEMM computes the matrix-matrix product

C BLAS

C BLAS a[j:n,j-nb:j-1] -

C BLAS a[j:n,1:j-nb-1] * Transpose(a[j-nb:j-1,1:j-nb-1])

C BLAS

C BLAS SGEMM stores the result into a[j:n,j-nb:j-1].

C ..

*

CALL SGEMM(’No transpose’, ’Transpose’, n-j+1, nb, j-nb-1,

+ -one, a(j, 1), lda, a(j-nb, 1), lda, one,

+ a(j,j-nb), lda)

*

* Compute subdiagonal block of L.

C ..

C BLAS STRSM solves the triangular system

C BLAS

C BLAS L * Transpose(a[j-nb:j-1,j-nb:j-1]) = a[j:n,j-nb:j-1]

C BLAS STRSM stores the result l into a[j:n,j-nb:j-1]

C ..

*

CALL STRSM(’Right’, ’Lower’, ’Transpose’, ’Non-unit’,

+ n-j+1, nb, one, a(j-nb, j-nb), lda,

+ a(j, j-nb), lda)

*

* Update diagonal block.

C ..

C BLAS SSYRK computes the symmetric rank-k update

C BLAS

C BLAS a[j:j+jb-1,j:j+jb-1] -

C BLAS a[j:j+jb-1,1:j-1] * Tranpose(a[j:j+jb-1,1:j-1])

C BLAS

C BLAS SSYRK stores the result L into a[j:j-jb+1,j:j+jb-1]

C ..

*

jb = MIN(nb, n-j+1)

CALL SSYRK(’Lower’, ’No transpose’, jb, j-1, -one,

+ a(j,1), lda, one, a(j, j), lda)

*

* Factorise diagonal block a[j:j+jb-1,j:j+jb-1] by calling the

* non-blocked factorisation subroutine SLLT2.

*

CALL SLLT2(jb, a(j,j), lda, info)

IF(info .NE. 0) GO TO 30

19

20 CONTINUE

GO TO 40

*

30 CONTINUE

info = info + j - 1

*

40 CONTINUE

RETURN

*

* End of SLLTB

*

END

5.2.3 Sparse matrix operations

What is a sparse matrix?

A sparse matrix is a matrix for which only a very small fraction of the elements
is non-zero. In general such a matrix has only a few non-zero elements in each
row (in many cases less than ten non-zero elements in a matrix which has an
order of tens of thousands or even more). It is clear that it would be a waste of
memory to devote large amounts of storage to the zero elements. For that reason
many ways have been devised to store such matrices. The actual method chosen
depends on the pattern, if any, of the non-zero elements, and on the operations
needed. On the other hand you do not want to perform operations on such
matrices where a large number of zero elements becomes non-zero (so-called
fill-in).

General sparse matrices

The most general kind of sparse matrix is one where a randomly chosen element
has a small (but non-zero) probability of being non-zero. This means that there
is no pattern to be discerned in the non-zero elements; they are randomly placed
within the matrix. There are a few models for storage layout in this case:

1. A one-dimensional array containing the non-zero data plus two one-dimen-
sional index arrays that contain the actual row c.q. column indices of those
elements. In its general form this version is not very useful; it is difficult
to find an explicit element of the matrix (given row and column number).
Moreover, finding whether an element is zero means a pass through the
non-zero elements to see that the element in question is missing. The
storage can be specialised a bit by storing the non-zero elements of a
row (or column) consecutively in the array and providing additional index
arrays that point to the start and/or end of these rows (columns). This
however will cause fill-in and a rearrangement of many elements.

20

2. A series of one-dimensional data and index arrays, one each for every row
of the matrix. This has the advantage over the first model that it is easy
to trace rows of the matrix and, if the arrays are large enough, fill-in is
handled on a row-by-row basis.

3. Of course we could use a similar storage by column with similar advantages
and disadvantages.

4. We can follow a different approach by using linked lists. For instance we
can create a linked list of all the non-zero elements of a row for each row
of the matrix. In this case a non-zero element is presented by a node
containing the value and a pointer to the next non-zero value of the row.
Clearly, fill-in is easily handled by just inserting the new element in the
list. A disadvantage is (at least in some programming languages) that
some form of memory management is necessary. An additional feature is
the use of doubly linked lists, where each node not only contains a pointer
to the next non-zero element, but also to the previous non-zero element.

5. Indeed, also here the linked lists can be columnwise rather than rowwise.

6. The previous storage versions can be combined by making nodes not only
point to next (and possibly previous) non-zero elements in the same row,
but also in the same column. A main advantage of this method is that it
makes it very easy to follow both rows and columns of a matrix.

Vectorisation of some operations is possible with storage methods 2 and 3
(and method 1 if non-zero elements of the same row or column are kept to-
gether). For example, assume the following (Fortran) declarations (here MATDIM
is the actual order of the matrix and MATFRAC is the largest number of non-zero
elements in a row, for storage method 2):

REAL elem(matdim, matfrac)

INTEGER index(matdim, matfrac), inonz(matdim)

The value of elem(i,j) is the actual value of matrix element i, index(i,j).
Moreover, inonz(matdim) contains the number of non-zero elements in a par-
ticular row. To evaluate the innerproduct of row ir of the matrix with a (given)
vector V the following loop will do:

prod = 0.0

DO i = 1, inonz(ir)

prod = elem(ir,i) * v(index(ir,i)) + prod

ENDDO

If the processor has “gather” hardware, this loop can be completely vectorised.
On the other hand, standard “SAXPY” operations (where the multiple of a
particular column of the matrix is added to a vector) are not simple; for such
operations storage method 3 would be preferred, but in that case innerproducts

21

are very difficult. If you need many matrix-vector products , the way you want
to do it (using saxpys or innerproducts) more or less dictates the storage method
to be chosen. (As and aside: in Fortran you want of course to interchange the
indices of INDEX and ELEM, so that the stride becomes 1.)

Storage methods 4 to 6 are never vectorizable because accessing a row (or
column) means “pointer-chasing”, i.e., only after you have retrieved a particular
element you know where the next one will be. However, with the current crop
of fast scalar processors, these storage methods will in most cases not lead to
worse performance than what can be achieved by other methods. This means
that if you want to parallelise operations on a series of fast scalar processors,
storage methods 4 and 6 might very well be preferable. (Of course, if you want
to parallelise, you want to keep the linked lists sorted according to row and/or
column index.)

A set of operations for these storage methods (in particular method 2 and
3) have been proposed by Dodson and Lewis[9]. A major disadvantage of this
paper is that it only defines BLAS-1 type operations, but as shown above, some
of these are only useful if the row-storage method is used while others are only
useful if the column-storage method is used.

Most research on these matrices is in ways to find a set of row and/or col-
umn interchanges such that the pattern of non-zero elements becomes more
tractable. When this is possible, more straightforward techniques can be used
to manipulate such matrices. But this is still on-going research.

Diagonal matrices

The situation is much simpler if we look at sparse matrices where only a
limited number of diagonals (sub- and super-diagonals) contains non-zero ele-
ments. Devoting a row or a column of a two-dimensional array to each non-zero
(sub/super-) diagonal of the matrix can in general solve most problems, and if
the number of non-zero diagonals is very small, a number of one-dimensional
arrays can be used. As an example, take a matrix of order N2, where only the
main diagonal, the first sub- and super-diagonal and the N -th sub- and super-
diagonal contain non-zero elements. We might consider the following declaration
in Fortran 77:

REAL elem(nsqu, -2:2)

where elem(i,0) is the main diagonal element (i,i); elem(i,1) is the super-
diagonal element (i,i+1), for i ≤ nsqu-1; elem(i,2) is the super-diagonal
element (i,i+n), for i ≤ nsqu-n; and similarly, elem(i,-1) is the sub-diagonal
element (i,i-1), for i > 1 and elem(i,-2) is the sub-diagonal (i,i-n), for
i > n. To calculate the product w of this matrix with a vector v we need the
following (five) loops:

DO i = 1, nsqu

w(i) = v(i) * elem(i,0)

ENDDO

22

DO i = 1, nsqu-1

w(i) = w(i) + v(i+1) * elem(i,1)

ENDDO

DO i = 1, nsqu-n

w(i) = w(i) + v(i+n) * elem(i,2)

ENDDO

DO i = 1+1, nsqu

w(i) = w(i) + v(i-1) * elem(i,-1)

ENDDO

DO i = n+1, nsqu

w(i) = w(i) + v(i-n) * elem(i,-2)

ENDDO

(Check out that this indeed will give the matrix-vector product.)
All of these operations are easily vectorizable (they are all “SAXPY”s);

moreover, all operations have unit stride on all arrays involved (if you use For-
tran). You can also code the same matrix multiplication using innerproducts
but in that case the stride across the matrix is non-unit, and there will be many
short loops.

We could also store the diagonals in rows of the array; but in that case
matrix-vector product with SAXPY will result in a non-unit stride, while the
(shorter) vector inner-product-operation will have a unit stride. Alas, storing
the diagonals in rows is the method chosen in both LINPACK and LAPACK!

Exercise 5.4 For the six storage methods proposed, some indication is given on
how the operations can be vectorised. Check exactly how a matrix-vector prod-
uct can be vectorised using those six methods (using innerproducts or SAXPY)
and whether GATHER/SCATTER operations are needed. 2

Exercise 5.5 Which storage methods allow simple distribution of the data
across a number of processors, such that a matrix-vector product can be calcu-
lated without intermediate communication. Here simple distribution means few
communications and no data rearrangement. 2

5.2.4 Solving linear equations by direct methods

The solution of a system of linear equations can be computed by direct or by
iterative methods. The choice between the two is determined by the expected
time for the calculations and the expected total time for data access to solve
the system at hand. In general we could say that direct methods are used for
dense matrices that are not extremely large.

We will not deal with iterative methods in this section. In all direct meth-
ods the matrix is factored as a product of so-called simple matrices; a matrix
is simple if a linear system with such a matrix can be solved with O(n2) arith-
metical operations. Examples of simple matrices are triangular matrices (both
upper- and lower triangular), unitary matrices and elementary matrices, which

23

are matrices of the form (I + ghT) – in the real case – with g and h satisfying
hTg = 0.

Triangular factorisation

The best known and most applied direct methods are the triangular factorisation
methods. In these methods matrix A is factored as the product of a lower- and
an uppertriangular matrix, L and U , respectively. For numerical stability it is
necessary in general that the rows of matrix A are permuted. The appropriate
permutation is determined during the factorisation process and applied in such
a way that the final result holds as if this permutation had been known in
advance.

In formula we have
PA = LU,

where Lij = 0 for i < j, Uij = 0 for i > j and P is a permutation matrix.
The solution of Ax = b is now calculated by solving for y the triangular system
Ly = Pb (forward substitution) followed by solving for x the triangular system
Ux = y (backward substitution), according to the following equivalencies:

(Ax = b)⇔ (PAx = Pb)⇔ (LUx = Pb)⇔ (Ly = Pb ∧ Ux = y).

The many variants of LU-factorisation that do exist, can be divided into three
classes: the innerproducts variants, the middleproducts variants and the outer-
products variants.

The advantages and disadvantages of the various types are determined by
the architecture of the machine and the type of data storage that is used for the
matrix.

I Innerproducts variants.
Once a choice has been made for the way the diagonal elements of L
and U are scaled, the remaining elements of L and U are determined
consecutively from equating the elements of A:

Aij =
min(i,j)∑
k=1

Lik × Ukj .

LU-factorisation codes belonging to this class are seldom used on vector-
and parallel computers.

II Middleproducts variants.
From the many schemes that belong to this class, we take one that is
oriented columnwise. The algorithm that we will describe is called a “left
looking algorithm” for reasons that become clear from the description and
the illustration in Figure 5.3.

Assume that the first k columns of L and U have been calculated. The
(k+ 1)-st columns of U and L are calculated from the following relations:

24

k+1

L

U

(k)

(k)

A

Figure 5.3: Left looking algorithm of middleproduct variant of LU factorisation

1. L[1:k,1:k]U[1:k,k+1] = A[1:k,k+1].

2. Uk+1,k+1 = 1 (by choice of normalisation).
The (k+1)-st column of L is determined in two steps. First a tempo-
rary version of L[k+1:n,k+1] is determined from the following relation:

3. L[k+1:n,1:k]U[1:k,k+1] + L[k+1:n,k+1] = A[k+1:n,k+1].

4. Determine the index p (say) of an element with maximal size in
L[k+1:n,k+1].

5. Interchange rows p and (k + 1) of the (n − k) × (k + 1) submatrix
L[k+1:n,1:k+1]; the same rows in the remaining part of matrix A are
also to be interchanged. Information for this interchanging is stored.

BLAS-2 routines can be used in steps 1 and 3, step 1 requiring the solution
of a linear system with a triangular matrix and step 3 a matrix-vector
multiplication.

After n − 1 steps the factorisation is accomplished. All row interchanges
must be recorded in order to perform all appropriate interchanges on the
elements of the right-hand side vector. The solution vector of the original
system can then be computed by forward- and backward substitution with
the triangular systems as was described earlier. For these substitutions an
appropriate BLAS-2 routine can be used.

III Outerproducts variants.
The factorisation schemes in this class use updates of the entire part of
the remaining matrix. The “classical” Gaussian elimination scheme is a
member of this class. A representative example is described below; it is
called a “right looking algorithm”, for reasons that will become clear from
the description and the illustration in Figure 5.4.

Assume that the first k columns of L and the first k rows of U have
already been calculated and that the remaining part of the matrix has

25

k+1

L

U

(k)

(k)

A
(k)

Figure 5.4: Right looking algorithm of outerproduct variant of LU factorisation.

been updated in each step as is defined in the algorithm. The (k + 1)st

column of L and the the (k+1)st row of U are calculated from the following
relations:

1. Determine the index p (say) of an element with maximal size in
A[k+1:n,k+1].

2. Interchange rows p and (k+1) of the (n−k)×k submatrix L[k+1:n,1:k];
the same rows in the remaining part of matrix A must also be inter-
changed. Information for this interchanging is stored.

3. U[k+1,k+1:n] = A[k+1,k+1:n].

4. Lk+1,k+1 = 1 (by choice of normalisation).

5. L[k+2:n,k+1] = A[k+2:n,k+1]/Uk+1,k+1.

6. A[k+2:n,k+2:n] := A[k+2:n,k+2:n] − L[k+2:n,k+1] × U[k+1,k+2:n].

A BLAS-2 routine can be used in step 6 which requires a rank-1 matrix
update. After n− 1 steps the factorisation is accomplished.
All row interchanges must be recorded in order to perform all appropriate
interchanges on the elements of the right-hand side vector. The solution
vector of the original system can then be computed by forward- and back-
ward substitution with the triangular systems as was described before.

Note that in outerproduct variant we made a choice for the diagonal elements
of L being equal to 1, which differs from the earlier innerproduct variant where
we chose the diagonal elements of U being equal to 1.

Hierarchical algorithms

The algorithms from the three classes above may not be optimal for multipro-
cessor computers. Better performance can be attained with block versions of
the LU-factorisation algorithms such that BLAS-3 subroutines can be applied.

26

In that case the matrix is divided in blocks of size s × s. The optimal value
of parameter s is determined by the architecture of the specific computer. It
depends on a variety of machine characteristics such as the ratio of the time
for a floating-point operation to the time for fetching or storing such a number,
the size of the cache memory, the size of the registers and so on. (If s is not a
divisor of n, smaller rectangular blocks do occur along the border of the matrix,
but if n is large enough, this has no measurable effect on the performance of
the algorithm).

Block algorithms deal with submatrices where possible and with elements
where necessary, therefore they are called hierarchical algorithms; they can be
derived from the algorithms that belong to the earlier defined three classes of
LU-factorisation algorithms. As examples we will describe the block versions of
the two algorithms that were described earlier in classes II and III.

IIB A block middleproduct variant in a left looking version.
Suppose that the first (k − 1)× s columns of L and U have already been
calculated and stored in the corresponding parts of A. The next s columns
of L and U are calculated from the definition of multiplication of matrices
in partitioned form as is illustrated by Figure 5.5.

L

L

L

L

L A A

A A

A AU U

U

11 11 1112 12

21 2122 22 22

31 3132 32

× =

s(k-1) × s s(k-1) × s

Figure 5.5: A block middleproduct variant in a left looking version.

For the columns of L and U that are to be calculated the following relations
hold:

L11U12 = A12,
L21U12 + L22U22 = A22,
L31U12 + L32U22 = A32.

From this we find:

1. Determine U12 by solving the linear system L11U12 = A12;
(Solution of a system with multiple right-hand sides and a triangular
coefficient matrix.)

2. Perform the matrix update
(
A22

A32

)
:=
(
A22

A32

)
−
(
L21

L31

)
U12;

(Multiplication and subtraction of matrices.)

27

3. Calculate an LU-factorisation with partial pivoting by row inter-

changes of the rectangular matrix
(
A22

A32

)
; this is a straightforward

generalisation of the LU factorisation of a square matrix for which
one of the earlier algorithms can be applied. This yields L22, L32 and

U22 holding:
(
A22

A32

)
=
(
L22

L32

)
U22.

After dn/se “block-steps” an LU factorisation is calculated.

In steps 1 and 2 BLAS-3 routines can be applied for the indicated com-
putations.

IIIb A block outerproduct variant in a right looking version.
Suppose that the first (k−1)×s columns of L and the first (k−1)×s rows
of U have already been calculated and stored in the corresponding parts
of A, and that the lower right-hand square part of A has been updated as
defined in the following algorithm. The next s columns of L and s rows of
U are calculated from the definition of matrix multiplication as illustrated
in Figure 5.6:

L

L

L

L

L A A

A A

A AU U

U

11 11 1112 12

21 2122 22 22

31 3132 32

× =

U
13

U
23

A
13

A
23

A
33

(k-1) × s (k-1) × ss s

Figure 5.6: A block outerproduct variant in a right looking version.

1. Calculate an LU factorisation with partial pivoting by row inter-

changes of the rectangular matrix
(
A22

A32

)
yielding L22, L32 and

U22 such that
(
A22

A32

)
=
(
L22

L32

)
U22;

2. Determine U23 by solving the linear system L22U23 = A23;
(Solution of a system with multiple right-hand sides and a triangular
coefficient matrix.)

3. Perform matrix update: A33 := A33 − L32U23.
(Multiplication and subtraction of matrices.)

28

Also in this case we find that an LU factorisation is calculated after dn/se
“block-steps”. BLAS-3 routines can be applied in steps 2 and 3 for the
computations indicated.

Considerations for use on parallel platforms

“Which algorithm for the LU factorisation should be used on a given parallel
computer system?”

This question cannot be answered in general terms. The choice depends on
the hierarchy that is present in the memory of the given system. We will try to
illustrate this with some examples.

At one end of the spectrum we find the multiprocessor systems with dis-
tributed memory where each of the processors own a part of the total memory.
Also a cluster of workstations connected to a network can be viewed as belong-
ing to this class. The essential property is that all processors have access to
all of the memory, but the access time to the private memory is negligible in
comparison with the access time to the memory of other processors.

At the other end of the spectrum we find the multiprocessor systems with
shared memory. All processors share one, usually large, memory. To increase
the overall speed of such a computer system, a cache memory is linked between
the processors and the main memory. Data transfer between processors and
cache memory is an order of magnitude faster than between cache and main
memory. In general the processors do have registers which can be viewed as
small private memory with negligible access time.

In all variants of LU factorisation, the elements of L and U are written over
the original elements of matrix A, or at least this feature is offered as a possibil-
ity. So the total process of LU factorisation can be seen as a way of transforming
the original matrix elements of A into the corresponding elements of either L or
U . All computations, apart from those that are needed for pivoting, are such
that a matrix element is replaced by or augmented with some arithmetical func-
tion of other matrix elements. The total number of floating-point operations
that is needed in all variants is 2

3n
3 + cn2 for small value of c. The difference

between the variants is in the number of data accesses and the order in which
the data is accessed.

In distributed-memory computers, the matrix element that is subject to
change, should remain in the local memory of the processor that performs that
particular computation as much as possible for an efficient implementation.
Only the elements that are needed in the arithmetical function and which are
not private to the memory of that processor should be transported.

In shared-memory computers none of the data is local to none of the pro-
cessors; so in each computation all occurring matrix elements, either on the
left-hand side or on the right-hand side of an assignment, need to be trans-
ported to a processor. Here the important issue is to optimise the use of the
cache memory in such a way that elements that are used in different compu-

29

tations can reside in the cache until they are needed in the next computation
as much as possible. In this respect the use of BLAS level-3 routines is very
advantageous; the size of the submatrices must be tailored to the size of the
cache memory.

To be more specific, the outerproducts variants III and III B are very effi-
cient on distributed-memory systems. In each step of the algorithm under III,
only elements of the newly determined column of L and row of U need to be
broadcasted to other processors where they can be used for updating the appro-
priate matrix elements in the lower right-hand corner. In this way only 2(n−k)
elements are broadcasted in each step. This yields in total n2−n elements to be
broadcasted for the whole algorithm. If the network in the distributed-memory
system has a high latency (resulting in a large start-up time for interprocessor
communication), then the use of block algorithms enables the data to be sent in
larger chunks which is much more efficient. In that case the use of the algorithm
described under III B is to be advised.

The middleproduct variant under II B gives rise to an efficient implemen-
tation for a shared-memory system. As has been mentioned before, the proper
size of the blocks, (parameter s in the description of the algorithm), depends on
the size of the cache memory in relation to the size of the matrix.

Conclusion

For shared-memory parallel computers, reliable Fortran 77 implementations of
algorithms for solving linear algebra problems are available in LAPACK and
can be obtained via NETLIB. The routines in LAPACK do exploit BLAS-3
possibilities. For efficient use on a given shared-memory computer it is necessary
that the appropriate BLAS-3 routines are implemented efficiently.

For distributed-memory parallel computers, matters are more complicated.
The efficiency of an implementation depends on the distribution of the matrix
elements over the processors, the topology of the network and its latency. These
issues influence the structure of a parallel program via the use of communication
primitives. At the moment of this writing (April 1993) various developments
can be recognised in an effort to reach international standardisation in this area.

Exercise 5.6 In rare cases the partial pivoting strategy as used in the algo-
rithms described under II, III, IIB and IIIB is not numerically stable. As a
consequence the elements of U become much larger in modulus than the ele-
ments of the given matrixA. This will result in large errors. An effectual remedy
is the use of complete pivoting. According to this strategy rows and columns
must be interchanged such that in step k of Gaussian elimination the (k, k)-
diagonal element has maximal modulus among all elements in the remaining
lower right-hand corner submatrix of size (n− k + 1)× (n− k + 1).

Discuss whether or not it is possible to apply the complete pivoting strategy
in the four described variants of Gaussian elimination. 2

30

Exercise 5.7 A variant of Gauß-Jordan elimination has become known under
the name Gauß-Huard algorithm. It resembles Gauß-Jordan in the fact that
application of the algorithm results in transforming the given matrix into the
identity matrix. This is accomplished by eliminating both the elements under
and above the diagonal of the matrix in combination with appropriate scaling.

The difference between Gauß-Huard and Gauß-Jordan lies in the order in
which this elimination is performed. In the kth step of Gauß-Huard an already
created identity matrix of size (k− 1)× (k− 1) in the upper left-hand corner is
extended to a matrix of size k × k as follows.

i) The first (k − 1) elements of row k are eliminated by rows 1 to k − 1.

ii) A maximal element in modulus among the remaining elements in row k is
brought into diagonal position by interchanging the two relevant columns
of the matrix.

iii) The elements of the kth row are divided by this pivotal diagonal element so
that a new value 1 is created at the diagonal.

iv) The elements in the kth column above the diagonal are eliminated by the
kth row.

Note that all elements in the matrix below the kth row remain unchanged. Verify
that the number of floating-point operations for evaluating this algorithm is
(2/3)n3 +O(n2) like in standard Gaussian elimination. Note the difference with
the total of n3 + O(n2), which is the number of floating-point operations that
is needed in the Gauß-Jordan algorithm. 2

5.2.5 Iterative methods for linear systems

Many large scale computational problems lead to the problem of solving a large
linear system Ax = b, where A is a square nonsingular matrix of order n. Most
often, the matrix A is sparse, which means that only few elements per row are
non-zero, and usually only these non-zeros are stored along with pointers. This
sparse structure is important, since it permits to store very large systems, but in
many relevant cases much of the sparsity is lost if the system is solved by a direct
solution method, like, e.g., Gaussian elimination. Loss of sparsity leads to an
increase in computer memory requirements, and it may also lead to unacceptable
computer time requirements, since we have to proceed the calculations with the
new non-zero elements as well.

An alternative in such circumstances is offered by iterative methods. The
idea is that we try to improve an approximation to the solution x with only little
work and with modest memory resources. This is typically done by replacing
the given problem Ax = b by some other problem Kz = d, which is much easier
to solve. The standard approach is to write A as:

A = K −R. (5.2)

31

The original system can then be reformulated as

Kx = b+Rx = b+ (K −A)x,

and this system would have given the solution if we knew the right-hand side.
The basic iteration scheme follows from computing the right-hand side with a
current approximation, xi say, and to solve the system for xi+1:

Kxi+1 = b+ (K −A)xi,

or
Kxi+1 = Kxi + (b−Axi).

This basic iteration can be further simplified as

xi+1 = xi +K−1ri, (5.3)

where ri = b − Axi denotes the residual vector, which tells us how well the
current approximate solution xi satisfies the equation Ax = b. It should be
stressed that, although we have used the notation K−1, we almost never invert
K explicitly. Instead, when we need the vector y = K−1ri, we compute it by
solving y from Ky = ri.

For our further discussion on iterative methods we will assume that the
matrix A has been split as

A = I − (I −A). (5.4)

This is no loss of generality, since the more general splitting A = K −R can be
rewritten as the splitting B = I − (I − B) for the matrix B = K−1A. In this
case we say that the matrix A has been preconditioned with K. The iteration
in (5.3) then reads as

xi+1 = xi + ri, (5.5)

which is the standard Richardson iteration method.
For this standard iteration method it follows that

xi+1 = x0 + r0 + r1 + r2 + ...+ ri. (5.6)

Multiplying the standard iteration (5.5) with −A, and adding b at both sides,
gives

b−Axi+1 = b−Axi −Ari,
or

ri+1 = (I −A)ri = (I −A)i+1r0. (5.7)

In order to keep our formulas as simple as possible, we will further assume that
x0 = 0. This too does not mean a loss of generality, for the given system with

32

x0 6= 0 can through a simple linear transformation z = x − x0 be transformed
to the system Az = b−Ax0 = b̃ for which obviously z0 = 0.

This leads to the observation that xi+1 can be viewed as an expression in
powers of A:

xi+1 = r0 + r1 + ...+ ri =
i∑

j=0

(I −A)jr0, (5.8)

and hence, although computed differently, the vector xi+1 is in the subspace
spanned by the vectors r0, Ar0, ..., Air0. This (i + 1) dimensional subspace is
called the Krylov subspace, denoted as Ki+1(A; r0).
Apparantly, the Richardson iteration delivers approximations that are elements
of Krylov subspaces of increasing dimension.

Exercise 5.8 Show that for any xi+1 ∈ Ki+1(A; r0) the residual ri+1 can be
written as

ri+1 = Pi+1(A)r0, (5.9)

where Pi+1 is polynomial of degree i + 1, with the property that Pi+1(0) = 1.
2

Iterative methods that generate solutions in Krylov subspaces are called
Krylov subspace methods. For a good mathematical introduction to this class
of successful and popular methods, see [13].

The Conjugate Gradients Method

The natural question arises whether we can find a better approximate solution
xi in the Krylov subspace. There are two approaches, one of which is to try
to find the xi ∈ Ki−1(A; r0) for which the residual ri is orthogonal to the
current subspace. This means that in a sense the subspace is explored as good
as possible.

It is easy to verify that r1 ∈ {r0, Ar0}, and hence, for the desired xi we
have that r0 and r1 should form an orthogonal basis for the Krylov subspace of
dimension 2. We leave it as an exercise to show that if we continue in this way,
then

{r0, r1, ..., ri} form an orthogonal basis for Ki+1(A; r0). (5.10)

This leads to the idea to construct an orthogonal basis for the Krylov subspace,
since then each basis vector would be a multiple of a residual vector, and we
may hope to find the corresponding approximations to the solution relatively
easy. We will sketch briefly how this works out. For a more rigorous derivation
we refer to [16].
If the matrix A is symmetric, then one can show by an induction argument that
the orthogonal basis can be generated by a 3-term recurrence:

α̃j+1rj+1 = Arj − β̃jrj − γ̃jrj−1. (5.11)

33

The constant α̃j+1 is necessary to make sure that rj+1 has the right length,
i.e., this vector should be equal to b − Axj+1. The value follows from the
requirement that rj+1 can be written as rj+1 = Pj+1(A)r0, with Pj+1(0) = 1.
This is a technical detail that has been taken care for in the final algorithm.
The other constants follow from the ortogonality conditions.
If we define Ri as the matrix with columns r0, . . . , ri−1, then the recurrence
relation can be rewritten in matrix notation as

ARi = Ri

.

. γ̃j
. . . β̃j

. . .

α̃j+1
.
.

+ α̃i

 0, 0, . . . , ri

or
ARi = RiTi + α̃irie

T
i , (5.12)

in which Ti is an i by i tridiagonal matrix and ei is the ith canonical vector in
IRi.

Since we are looking for a solution xi in Ki(A; r0), that vector can be written
as a combination of the basis vectors of the Krylov subspace, and hence

xi = Riy.

(Note that y has i components)
Further we have for the xi that its residual is orthogonal to all columns of the
matrix Ri:

RTi (Axi − b) = 0

⇒ RTi ARiy −RTi b = 0.

Using equation (5.12) and the fact that ri is orthogonal with respect to the
columns of Ri, and that r0 = b−Ax0 = b, we obtain

RTi RiTiy = ‖r0‖22e1

Since RTi Ri is a diagonal matrix with diagonal elements ‖r0‖22 up to ‖ri−1‖22 we
find the desired solution from

Tiy = e1 ⇒ y ⇒ xi = Riy.

Note that so far we have only used the fact that A is symmetric and we have
assumed that the matrix Ti is not singular. This opens the possibility for several
suitable iterative methods, among which the Conjugate Gradients method. The

34

Krylov subspace method that has been derived here is known as the Lanczos
method for symmetric systems [26].

Note that for some j ≤ n− 1 the construction of the orthogonal basis must
terminate. In that case we have that ARj+1 = Rj+1Tj+1. Let y be the solution
of the reduced system Tj+1y = e1, and xj+1 = Rj+1y. Then it follows that
xj+1 = x, i.e., we have arrived at the exact solution, since Axj+1−b = ARj+1y−
b = Rj+1Tj+1y − b = Rj+1e1 − b = 0 (we have assumed that x0 = 0).

The Conjugate Gradients method [19] is merely a variant on the above
approach, which saves storage and computational effort. For, when solving the
projected equations in the above way, we see that we have to save all columns
of Ri throughout the process in order to recover the current iteration vectors
xi. This can be done cheaper. If we assume that the matrix A is in addition
positive definite then, because of the relation

RTi ARi = RTi RiTi,

we conclude that Ti can be transformed by a rowscaling matrix RTi Ri into a
positive definite symmetric tridiagonal matrix

Exercise 5.9 Prove that RTi ARi is positive definite. Hint: note that this ma-
trix is an (i + 1) by (i + 1) matrix and note that by definition (By, y) 6= 0 for
any y 6= 0, for a positive definite matrix B. 2

This implies that Ti can be LU decomposed without any pivoting:

Ti = LiUi,

with Li lower unit bidiagonal and Ui upper bidiagonal.
This property is used in the implementation of the Conjugate Gradients method.
It turns out that the 3-term recurrence relation (corresponding to Ti) can be
replaced by two 2-term recurrences (corresponding to the factors Li and Ui), and
that only the last residual and an update vector for the approximate solution
have to be stored in memory.

The convergence of the Conjugate Gradients method depends on spectral
properties of the matrix A. Therefore, one often applies the method in com-
bination with a preconditioner K = LLT , in order to improve the convergence
behaviour, i.e., one applies the method to the system

L−1AL−T y = L−1b, with x = L−T y. (5.13)

The following computational scheme solves Ax = b with preconditioned CG and
with preconditioner K. By a proper transformation we have reformulated the
scheme so that the approximate solution xi, and the corresponding residual (for
the unpreconditioned equations) are delivered immediately.

35

x0= initial guess; r0 = b−Ax0;
p−1 = 0;β−1 = 0;
Solve w0 from Kw0 = r0;
ρ0 = (r0, w0)
for i = 0, 1, 2,

pi = wi + βi−1pi−1;
qi = Api;
αi = ρi

(pi,qi)

xi+1 = xi + αipi;
ri+1 = ri − αiqi;
if xi+1 accurate enough then quit;
Solve wi+1 from Kwi+1 = ri+1;
ρi+1 = (ri+1, wi+1);
βi = ρi+1

ρi
;

end;

Note that this formulation, which is quite popular, has the advantage that
the preconditioner needs not to be split into factors, and it is also avoided to
backtransform solutions and residuals, as is necessary when one applies CG to
L−1AL−T y = L−1b.

When A is not positive definite, but still symmetric, then the reduced system
Tiy = e1 should be solved other than by LU -decomposition of Ti. In SYMMLQ
[28] this is done by an LQ-decomposition.

Still another approach is to find an xi in the Krylov subspace for which ‖ri‖2
is minimal. This can also be done by first creating an orthogonal basis by a
3-term recurrence, and then solve the projected system in a least-squares sense.
The resulting scheme is slightly more complicated than the Conjugate Gradient
scheme, and is known as the MINRES method[28].

Nonsymmetric problems

There are essentially three different ways to solve linear systems with a non-
symmetric non-singular matrix, while maintaining some kind of orthogonality
between the residuals:

1. Solve the normal equations ATAx = AT b with conjugate gradients

2. Make all the residuals explicitly orthogonal in order to have an orthogonal
basis for the Krylov subspace

3. Construct a basis for the Krylov subspace by a 3-term biorthogonality
relation

The first solution seems rather obvious. However, it has severe disadvantages
because of the squaring of the condition number. This has as effects that the

36

solution is more susceptible to errors in the right-hand side and that the rate
of convergence of the CG procedure is much slower than for a comparable sym-
metric system with a matrix with the same condition number as A. Moreover,
the amount of work per iteration step, necessary for the matrix vector product,
is doubled. Nevertheless, the method may be attractive in certain situations,
e.g., when the systems are overdetermined or underdetermined. For details, see
[29, 39].

GMRES The second approach is to form explicitly an orthonormal basis for
the Krylov subspace. Since A is not symmetric we no longer have a 3-term
recurrence relation for that purpose and the new basis vector has to be made
explicitly orthonormal with respect to all the previous vectors:

v1 =
1
‖r0‖2

r0,

hi+1,ivi+1 = Avi −
i∑

j=1

hj,ivj .

As in the symmetric case this can be exploited in two different ways. The
orthogonality relation can either be written as

AVi = ViHi + hi+1,ivi+1e
T
i , (5.14)

after which the projected system, with a Hessenberg matrix instead of a tridi-
agonal matrix as in the symmetric case, can be solved (non-symmetric CG,
GENCG, FOM, Arnoldi’s method), or it can be written as

AVi = Vi+1H̄i, (5.15)

after which the projected system, with an i + 1 by i upper Hessenberg matrix
can be solved as a least squares system. In GMRES [33] this is done by the QR
method using Givens rotations in order to annihilate the subdiagonal elements
in the upper Hessenberg matrix H̄i.
The first approach (based upon (5.14)) is similar to the conjugate gradient
approach (or SYMMLQ), the second approach (based upon (5.15)) is similar to
the conjugate directions method (or MINRES).

Below we give a scheme for GMRES which may be suitable to develop a
computer code. It solves Ax = b, with a given preconditioner K. In order
to restrict on memory storage, the method is restarted after each cycle of m
iteration steps. This variant is usually referred to as GMRES(m).

x0 is an initial guess;
for j = 1, 2,

Solve r from Kr = b−Ax0;

37

v1 = r/‖r‖2;
s := ‖r‖2e1;
for i = 1, 2, ...,m

Solve w from Kw = Avi;
for k = 1, ..., i orthogonalisation of w

hk,i = (w, vk); against v’s, by modified
w = w − hk,ivk; Gram-Schmidt process

end k;
hi+1,i = ‖w‖2;
vi+1 = w/hi+1,i;
apply J1, ..., Ji−1 on (h1,i, ..., hi+1,i);
construct Ji, acting on i–th and (i+ 1)–st component
of h.,i, such that (i+ 1)–st component of Jih.,i is 0;
s := Jis;
if s(i+ 1) is small enough then (UPDATE(x̃, i); quit);

end i;
UPDATE(x̃,m);

end j;

In this scheme UPDATE(x̃, i) replaces the following computations:

Compute y as the solution of Hy = s̃, in which
the upper i by i triangular part of H has hi,j as
its elements (in least squares sense if H is singular),
s̃ represents the first i components of s;
x̃ = x0 + y1 ∗ v1 + y2v2 + ...+ yivi;
si+1 equals ‖b−Ax̃‖2;
if this component is not small enough
then x0 = x̃;
else quit;

Bi-Conjugate Gradients The third class of methods arises from the attempt
to construct a suitable set of basis vectors for the Krylov subspace by a three-
term recurrence relation as in (5.11):

α̃j+1rj+1 = Arj − β̃jrj − γ̃jrj−1. (5.16)

The orthogonality of such a set of vectors can be obtained when the matrix A
is symmetric. In the non-symmetric case we need that

(Arj−1, rk) = (rj−1, A
T rk) = 0 for k < j − 2.

By similar arguments as in the symmetric case we conclude that (5.16) can be
used to generate a basis r0,...,ri−1 for Ki(A; r0), such that rj ⊥ Kj−1(AT ; r0),
or even more general,

rj ⊥ Kj−1(AT ; s0),

38

since there is no explicit need to generate the Krylov subspace for AT with r0
as the starting vector.
If we let the basis vectors sj for Ki(AT ; s0) satisfy the same recurrence relation
as the vectors rj , i.e., with identical recurrence coefficients, then we see that

(rk, sj) = 0 for k 6= j

(by a simple symmetry argument).
Hence, the sets {rj} and {sj} satisfy a biorthogonality relation. Now we can
proceed in a similar way as in the symmetric case:

ARi = RiTi + α̃irie
T
i , (5.17)

but now we use the matrix Si = [s0, s1, ..., si−1] for the projection of the system

STi (Axi − b) = 0,

or
STi ARiy − STi b = 0.

Using (5.17) we find that yi satisfies

STi RiTiy = (r0, s0)e1.

Since STi Ri is a diagonal matrix with diagonal elements (rj , sj), we find, if all
these diagonal elements are non-zero, that

Tiy = e1 ⇒ xi = Riy.

This method is known as the Bi-Lanczos method[26].
We see that we are in problems when a diagonal element of STi Ri becomes
(nearly) zero: this is referred to in literature as a serious (near) breakdown.
The way to get around this difficulty is the so-called look-ahead strategy [27].
Another way to avoid break-down is to restart as soon as a diagonal element gets
small. Of course, this strategy looks surprisingly simple, but one should realise
that at a restart the Krylov subspace, that has been built up so far, is thrown
away which destroys possibilities for faster (i.e., superlinear) convergence.

As is the case for Conjugate Gradients, the LU decomposition of the tridi-
agonal system can be used to obtain nice short update recurrences for the ap-
proximate solution and the corresponding residual. This avoids the need to save
all intermediate r and s vectors. This variant of Bi-Lanczos is usually called
Bi-Conjugate Gradients, or shortly Bi-CG [12].
Of course one can in general not be sure that an LU decomposition (without
pivoting) of the tridiagonal matrix Ti exists, and this may lead to a serious
break-down of the Bi-CG algorithm. Note that this break-down can be avoided
in the Bi-Lanczos formulation of this iterative solution scheme.

39

Note that for symmetric matrices Bi-Lanczos generates the same solution as
Lanczos, provided that s0 = r0, and under the same condition, Bi-CG de-
livers the same iterands as CG, for positive definite matrices. However, the
Bi-orthogonal variants do so at the cost of two matrix-vector operations per
iteration step.

It is difficult to make a fair comparison between GMRES and Bi-CG. GM-
RES really minimises a residual, but at the cost of increasing work for keeping all
residuals orthogonal and increasing demands for memory space. Bi-CG does not
minimise a residual, but often it convergences about as fast as GMRES, at the
cost of twice the amount of matrix-vector products per iteration step. However,
the generation of the basis vectors is relatively cheap and the memory require-
ments are limited and modest. Several variants of Bi-CG have been proposed
which increase the effectiveness of this class of methods in certain circumstances.
We mention CGS [37], BiCGSTAB [40], QMR [14], and BiCGSTAB(`) [34].
For popular descriptions and implementations of these methods, as well as for
guidelines for their usage, see [1].

The following scheme may be used for a computer implementation of the
Bi-CG method. In the scheme the equation Ax = b is solved with a suitable
preconditioner K.

x0 is an initial guess; r0 = b−Ax0;
solve w0 from Kw0 = r0;
r̃0 is an arbitrary vector such that (w0, r̃0) 6= 0,
usually one chooses r̃0 = r0 or r̃0 = w0;
solve w̃0 from KT w̃0 = r̃0;
p−1 = p̃−1 = 0;β−1 = 0; ρ0 = (w0, r̃0);
for i = 0, 1, 2,

pi = wi + βi−1pi−1;
p̃i = w̃i + βi−1p̃i−1 ;
zi = Api;
αi = ρi

(p̃i,zi)
;

ri+1 = ri − αizi;
r̃i+1 = r̃i − αiAT p̃i;
solve wi+1 from Kwi+1 = ri+1;
solve w̃i+1 from KT w̃i+1 = r̃i+1;
ρi+1 = (r̃i+1, wi+1) ;
xi+1 = xi + αipi;
if xi+1 is accurate enough then quit;
βi = ρi+1

ρi

end

40

Parallel Aspects

In this section we discuss briefly parallel aspects of iterative methods for solving
large linear systems. From the discussions it should be clear how to combine
coarse-grained and fine-grained approaches, for example when implementing a
method on a parallel machine with vector processors. The implementation for
such machines, in particular those with shared memory, is given much attention
in [10]. For a more detailed discussion of iterative methods for linear systems
on parallel architectures, see [8].

Parallelism in the kernels of iterative methods The basic time-consuming
computational kernels of iterative schemes are usually:

1. innerproducts,

2. vector updates,

3. matrix-vector products, like Api (for some methods also AT pi),

4. preconditioning (e.g., solve for w in Kw = r).

The innerproducts can be easily parallelised; each processor computes the in-
nerproduct of two segments of each vector (local inner products or LIPs). On
distributed-memory machines the LIPs have to be sent to other processors in
order to be reduced to the required global inner product. This step requires
communication. For shared-memory machines the innerproducts can be com-
puted in parallel without problem. If the distributed-memory system supports
overlap of communication with computation, then we have to find opportunities
in the algorithm to do so. In the standard formulation of most iterative schemes
this is usually a major problem.
Vector updates are trivially parallelizable: each processor updates its ‘own’ seg-
ment.
The matrix-vector products are often easily parallelised on shared-memory ma-
chines, by splitting the matrix in strips, corresponding to the vector segments.
Each processor takes care of the matrix-vector product of one strip. For distributed-
memory machines there may be a problem if each processor has only a segment
of the vector in its memory. Depending on the bandwidth of the matrix we
may need communication for other elements of the vector, which may lead to
communication problems. However, many sparse matrix problems are related
to a network in which only nearby nodes are connected. In such a case it seems
natural to subdivide the network, or grid, in suitable blocks and to distribute
these blocks over the processors. When computing Api each processor needs at
most the values of pi at some nodes in neighbouring blocks. If the number of
connections to these neighbouring blocks is small compared to the number of
internal nodes, then the communication time can be overlapped with computa-
tional work.

41

The preconditioning part is often the most problematic part in a parallel envi-
ronment. Incomplete decompositions of A form a popular class of precondition-
ings, in the context of solving discretised PDEs. In this case the preconditioner
K = LU , where L and U have a sparsity pattern equal or close to the sparsity
pattern of the corresponding parts of A (L is lower triangular, U is upper tri-
angular). Solving Kw = r leads to solving successively Lz = r and Uw = z.
These triangular solves lead to recurrence relations which are not easily paral-
lelised. We will now discuss a number of approaches to obtain parallelism in
the preconditioning part; for more details we refer to [10].

1. Reordering the computations. Depending on the structure of the matrix
a frontal approach may lead to successful parallelism. By inspecting the
dependency graph one can select those elements that can be computed
in parallel. For instance, if a second order PDE is discretised by the
usual five-point star over a rectangular grid, then the triangular solves
can be parallelised if the computation is carried out along diagonals of
the grid, instead of the usual lexicographical order. For vector computers
this leads to a vectorizable preconditioner. For coarse-grained parallelism
this approach is insufficient. By a similar approach more parallelism can
be obtained in three-dimensional situations: the so-called hyperplane ap-
proach. The disadvantage is that the data need to be redistributed over
the processors, since the grid points, which correspond to a hyperplane in
the grid, are located quite irregularly in the array. For shared memory
machines this also leads to reduced performance because of indirect ad-
dressing. In general one concludes that the data dependency approach is
not adequate for obtaining a suitable degree of parallelism.

2. Reordering the unknowns. One may also use a colouring scheme for re-
ordering the unknowns, so that unknowns with the same colour are not
explicitly coupled. This means that the triangular solves can be paral-
lelised for each colour. Of course, communication is required for cou-
plings between groups of different colours. Simple colouring schemes, like
red-black ordering for the five-point discretised Poisson operator, seem to
have a negative effect on the convergence behaviour. Duff and Meurant
[11] have carried out numerical experiments for many different orderings,
which show that the numbers of iterations may increase significantly for
other than lexicographical ordering.

3. Forced parallelism. Parallelism can also be forced by simply neglecting
couplings to unknowns residing in other processors. This is like block
Jacobi preconditioning, in which the blocks may be decomposed in in-
complete form. Again, this may not always reduce the overall solution
time, since the effects of increased parallelism are more than undone by
an increased number of iteration steps.

42

The problems with parallelism in the preconditioner have led to searches for
other preconditioners. Often simple diagonal scaling is an adequate precondi-
tioner and this is trivially parallelizable. Often this approach leads to a signif-
icant increase in iteration steps. Still another approach is to use polynomial
preconditioning: w = pj(A)r, i.e. K−1 = pj(A), for some suitable jth degree
polynomial. This preconditioner can be implemented by forming only matrix-
vector products, which, depending on the structure of A, are easier to parallelise.
For pj one often selects a Chebychev polynomial, which requires some informa-
tion on the spectrum of A. Finally we point out the possibility of using the
truncated Neumann series for the approximate inverse of A, or parts of L and
U .

5.2.6 Parallel Runge-Kutta methods for ODEs

Introduction

In this section we will concentrate on numerical methods for the initial value
problem (IVP) for the ordinary differential equation (ODE), written in the
autonomous form

y′(t) = f(y(t)), 0 ≤ t ≤ T, y ∈ IRN , f : IRN → IRN . (5.18)

Although parallel computers are available now for quite a few years, it is remark-
able that the construction of parallel methods for (5.18) received only marginal
attention and in fact is still in its infancy. A possible explanation may be that
the integration of an IVP by a step-by-step process is sequentially in nature and
thus offers little scope to exploit parallelism.

Nevertheless, there are some avenues.

(i) At first, there is the rather obvious way to distribute the various components
of the system of ODEs amongst the available processors. This is especially
effective in explicit methods, since they frequently need the evaluation of
the right-hand side function f for a given vector y, so that the compo-
nents of f can be evaluated independently of one another. This is called
parallelism across the problem.

(ii) A more interesting approach, called parallelism across the method, is to
employ the parallelism inherently available within the method. Concur-
rent evaluations of the vector function f for various values of its argument
and the simultaneous solution of various (non-linear) systems of equations
are examples of parallelism across the method. Remark that this form of
parallelism is also effective in case of a scalar ODE (i.e., N = 1 in (5.18)),
whereas parallelism across the problem aims at large N -values. Also no-
tice that both approaches can be combined because they are more or less
independent.

43

(iii) Still another approach, which could be termed parallelism across the time,
is to perform a number of time steps simultaneously, thus calculating
numerical approximations in many points on the t-axis in parallel. These
methods belong to the class of so-called waveform relaxation methods.
Experiments have shown that a significant speed-up can be obtained by
this approach provided that the number of time steps is (very) large. In
this section we will confine ourselves to parallelism across the method.

For the numerical integration of ODEs, two classes of methods are quite pop-
ular: Runge-Kutta methods and linear multistep methods. The codes based on
these classes of methods have reached a high level of sophistication and perform
well on sequential computers. However, since the underlying algorithms have
been designed in the “sequential era”, these methods do not allow for parallelism
across the method. Therefore, new methods have been constructed, specifically
designed to take profit from a parallel configuration. Here, we will concentrate
on parallel methods of Runge-Kutta type; however, parallel methods of linear
multistep type have been constructed as well. For these type of methods, the
interested reader is referred to [4, 5, 35] and the references quoted overthere.

It should be remarked that in constructing parallel methods, it is often
unavoidable to introduce some redundancy in the total volume of computational
arithmetic. Hence, compared with a good sequential Runge-Kutta method, it
is overambitious to expect a speed-up in the solution time with a factor s, if s
processors are available.

Finally, we remark that in many of the parallel Runge-Kutta methods con-
sidered in this section, a small number of concurrent subtasks of considerable
computational complexity can be distinguished. Consequently, (i) these meth-
ods are aiming at so-called “coarse-grain” parallelism and (ii) communication
and synchronisation overhead will be small compared with CPU time.

Nonstiff- and stiff-problems, stability, accuracy

In the construction of new algorithms we have to distinguish between two types
of IVPs, viz., those which are called stiff, meaning that the solution consists
of both slowly and rapidly varying components (like in chemical reactions),
and those which do not have this property, termed non-stiff (like in the orbit
equations of celestial bodies and in robotics). An example of a stiff equation is
y′ = −100y + 100, y(0) = y0 = 2, with exact solution y(t) = exp(−100t) + 1.
Between t = 0 and, say, t = 0.1 the solution rapidly decreases from y0 = 2 to
its limiting value 1. Beyond t = 0.1 the solution varies slowly, and is essentially
equal to 1.

Stiff and non-stiff types of IVPs require completely different numerical treat-
ments. Most simple are the so-called explicit methods, characterised by the fact
that only evaluations of the right-hand side function f are needed. The simplest
explicit method is the Euler method which defines the approximation yn+1 to

44

the solution at tn+1 by yn+1 = yn +hf(yn), where h = tn+1− tn. In the case of
non-stiff problems, an explicit method is an appropriate choice. However, when
we have to deal with stiff problems, these methods are very inefficient, since
unavoidable rounding errors and discretisation errors will be accumulated from
step to step. This accumulation, called numerical instability, becomes more
pronounced as the stiffness increases, and may easily destroy the accuracy of
the numerical solution after a few time steps. There are two remedies to bound
the accumulation of errors: first one could reduce the stepsize; for many stiff
problems this leads to such a stringent restriction of the time step that this rem-
edy is not feasible from a practical point of view. A better approach is to resort
to implicit methods, which can be given much better stability properties than
explicit methods. The simplest example of an implicit method is the backward
Euler method which is given by yn+1 = yn + hf(yn+1). The difference with the
explicit Euler method is that f is evaluated at yn+1 rather than at yn. As a
consequence, a (generally) non-linear system of equations has to be solved in
each time step to find the new approximation yn+1.

Another aspect which is relevant both for stiff and non-stiff solvers is the
order of accuracy. Obviously, the accuracy depends on the stepsize; the order
of accuracy of a method is p if the error in the numerical solution behaves
(asymptotically) as the stepsize to the power p. Many problems, especially
those with a sufficiently smooth solution, are most efficiently solved by a high-
order method.

In the sequel we shall mention various methods like Gauß-Legendre and
Radau methods, and various types of stability like A- and L-stability, and A(α)-
and L(α)-stability. Since the emphasis in this section is on parallel aspects of
Runge-Kutta methods, we shall (and need) not explain these concepts here.
The interested reader is referred to [18].

Parallel Runge-Kutta methods

The general Runge-Kutta (RK) method to proceed the numerical solution of
(5.18) from t = tn over a step h is given by

yn+1 = yn + h
s∑
i=1

bif(Yi), (5.19)

Yi = yn + h
s∑
j=1

aijf(Yj), i = 1, · · · , s. (5.20)

Here, yn ≈ y(tn); aij and bi are the coefficients defining the RK method, and
s is called the number of stages. The quantities Yi, the stage values, can be
considered as approximations to the solution y at intermediate points. An
RK method is said to be explicit if aij = 0, j ≥ i (i.e., Yi only depends on

45

Y1, . . . , Yi−1). Otherwise, it is called an implicit RK (IRK) method. For the
algorithms described here, our starting point will always be an IRK method.

A nice feature of IRK methods is that a high order of accuracy can be
combined with excellent stability properties [2]. Well-known examples of such
IRKs are the so-called Gauß-Legendre methods (order 2s and A-stable) and
the Radau IIA methods (order 2s − 1 and L-stable). A serious disadvantage
however, is the high cost of solving the algebraic equations (5.20) defining the
stage values Yi. Since the Yi are coupled in general, this is a system of dimension
s ·N , thus involving O((s ·N)3) arithmetic operations. This is the main reason
that IRK methods have not received great popularity to serve as the basis for
efficient, production oriented software. Several remedies have been proposed to
reduce the amount of linear algebra per step; however, these variants have their
own disadvantages and did not succeed in turning IRK methods into widely-
used integration techniques. Another more promising possibility to realise the
excellent prospects that IRK methods offer, is the use of parallel processors.

Motivated by the starting point that parallelism across the method should
also be effective for scalar ODEs, we will assume throughout that (5.18) is a
scalar equation. This has the notational advantage that we can avoid tensor
products in our formulation. However, the extension to systems of ODEs, and
therefore to non-autonomous equations, is straightforward.

In describing the parallel methods, it will be convenient to use a compact
notation for the RK method (5.19) and (5.20). Introducing A = (aij), b = (bi),
Y = (Yi) and e = (1, . . . , 1)T, all of dimension s, a succinct notation of the RK
method reads

yn+1 = yn + hbTf(Y), (5.21)

Y = yne+ hAf(Y), (5.22)

where f(v) := (f(vj)), for a given vector v = (vj). The main problem in the
application of an IRK is the solution of (5.22) for the stage vector Y ; once this
vector has been obtained, (5.21) is straightforward. A direct treatment to solve
(5.22) (i.e., applying some form of modified Newton iteration) offers little scope
to exploit parallelism, except for the linear algebra part, but this aspect is not
discussed here. To solve Y from (5.22), we use the iteration process

Y (j) − hDf(Y (j)) = yne+ h[A−D]f(Y (j−1)), j = 1, . . . ,m. (5.23)

Here, m is the number of iterations and D is a diagonal matrix. This is cru-
cial, since now, given an iterate Y (j−1), each individual component Y (j)

i of the
unknown iterate Y (j) has to be solved from an implicit relation of the form

Y
(j)
i − hdif(Y (j)

i)− Σi = 0, i = 1 . . . , s, (5.24)

where Σi is the ith component of the right-hand side vector in (5.23) and di
is the ith diagonal entry of the matrix D. Clearly, all Σi depend on Y (j−1),

46

but can be computed straightforwardly (even in parallel). The bulk of the
computational effort involves the solution of the s equations for the components
Y

(j)
i , i = 1, . . . , s. However, given the Σi, the equations (5.24) are uncoupled and

can be solved in parallel. Hence, assuming that we have s processors available,
each iteration in (5.23) requires effectively the solution of only one implicit
relation of the form (5.24). This is especially advantageous in case of (large)
systems of ODEs, because then each iteration in (5.23) requires effectively the
solution of a system of dimension N , the ODE dimension. As a consequence, the
total iteration process has the effect that the solution of one system of dimension
s ·N has been transformed into the solution of a sequence of m systems, all of
dimension N . Moreover, since D is the same in all iterations, the (parallel)
LU decompositions of the matrices I − hdi∂f/∂y can be restricted to the first
iteration. Summing up, the total computational complexity of the iteration
process isO(N3+mN2), whereas a direct treatment requiresO(s3N3+Ms2N2),
with M the number of (modified) Newton iterations required. Since typical s-
values range from 2 to 6 and because the required number of iterations m turns
out to be quite modest, we now arrive at a manageable level of arithmetic.

Henceforth, the above Parallel Diagonally-Iterated RK methods will be de-
noted by PDIRK methods.

To start the iteration (5.23), we need the initial approximation Y (0). One
of the possibilities to choose this vector is given by

Y (0) − hBf(Y (0)) = yne. (5.25)

Here, the matrix B will be chosen either zero or of diagonal form in order to
exploit parallelism (in the same way as described for (5.23)). In the sequel, the
initial approximation Y (0) will be referred to as the predictor.

If m iterations have been performed with (5.23), then the new approximation
at tn+1 is defined by (cf. (5.21))

yn+1 := yn + hbTf(Y (m)). (5.26)

Once an underlying IRK method, henceforth called the corrector, has been
selected (i.e., once b and A have been fixed in (5.21) and (5.22)), the freedom
left in the iteration process (5.23, 5.24, 5.25) consists of the matrices B and D,
and the number of iterations m.

With respect to the matrix D, we have several possibilities: first of all,
there is the simplest choice, which sets D equal to the zero-matrix. Notice that
this choice leads to an explicit iteration process and, consequently, the resulting
scheme is only suitable for non-stiff equations. Choosing the “trivial” predictor
Y (0) = yne, the order behaviour of the resulting algorithm can be formulated
as

Theorem 5.1 The method {(5.23) with D = O, (5.25) with B = O, (5.26)} is
of order min{p∗,m+1}, where p∗ is the order of the corrector (5.21) and (5.22).
2

47

Notice that this method is itself an explicit RK methods with s · m + 1
stages. However, on a parallel machine, the effective number of stages equals
only m + 1 (provided that s processors are available). This means that if the
number of iterations m ≤ p∗ − 1, then we obtain an explicit RK method where
the number of effective stages equals the order. This is an optimal result and
compares favourably with the situation for classical (uniprocessor) explicit RK
methods, where the number of stages increases faster than linearly if we want a
high order.

Next we consider the case of stiff problems, leading us to implicit methods,
i.e., to D 6= O. Before specifying particular choices of D, we first want to
discuss an aspect of the corrector which is relevant with respect to stiffness. In
integrating stiff ODEs, a favourable property of the method is that it is “stiffly
accurate”. This means that the RK method satisfies bT = eT

s A, with es the
sth unit vector. Hence, bT equals the last row of A, or equivalently, the last
component of the stage vector Y is an approximation to the solution at the new
step point tn+1. Therefore, in case of a stiffly accurate corrector, (5.26) will be
replaced by

yn+1 := eT
s Y

(m). (5.27)

Now, we return to the discussion of the matrix D; we distinguish two cases:

(i) D is such that after a prescribed number of iterations the resulting method
has good stability properties.

(ii) Another option is to solve the corrector, i.e., to iterate (5.23) until conver-
gence is obtained, and to choose D in such a way that convergence is as
fast as possible.

In the following two subsections these cases will be briefly discussed.

Diagonal iteration with a prescribed number of iterations

The strategy to fix the number of iterations is motivated by the following the-
orem:

Theorem 5.2 Let p∗ be the order of the underlying corrector (5.21) and (5.22).
Then the order p of the resulting PDIRK method {(5.23, 5.24 and 5.25), (5.26),
(5.27)} is given by

min{p∗,m+ r} for all matrices B and D,
min{p∗,m+ 1 + r} if Be = Ae,
min{p∗,m+ 2 + r} if, in addition, BAe = A2e,

where r takes the value 1 if yn+1 is defined by (5.26) (i.e., the non-stiffly accurate
case) and r = 0 if yn+1 is defined by (5.27) (the stiffly accurate case).

48

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK
method has the same property. 2

Based on this theorem, the iteration is stopped as soon as the order has
reached the order of the corrector, since a continuation of the iteration process
would not increase the order of the PDIRK method. For the matrix B occurring
in the predictor formula (5.23) we remark that B = O or B = D are obvious
choices. Although B and D may be different diagonal matrices, the choice B =
D has the computational advantage that the (expensive) LU decompositions of
I − dih∂f/∂y, which are needed during the iteration of (5.23), can also be used
in solving (5.25) for Y (0).

The diagonal matrix D is still free and can be used to give the result-
ing PDIRK method optimal stability characteristics. We distinguish two ap-
proaches: matrices D with constant and with varying diagonal entries. In the
first case, i.e., D is of the form d · I, it is possible to perform a rather thorough
stability analysis. It turns out that unconditionally stable PDIRK methods can
be constructed. A few of these methods are listed in Table 5.1. The relevant
d-values can be found in [22]. If we allow the matrix D to have non-constant

corrector matrices B and D attainable order p # effective stages stability

Gauß B = O,D = d · I p ≤ 4, p = 6 p− 1 A-stable
Gauß B = D = d · I p ≤ 6, p = 8 p L-stable
Radau II A B = O,D = d · I p ≤ 6, p = 8 p L-stable
Radau II A B = D = d · I p ≤ 8, p = 10 p+ 1 L-stable

Table 5.1: Unconditionally stable PDIRK methods with D = d · I.

entries, then it is possible to save one iteration without reducing the order, sim-
ply by setting B = D = diag(Ae) (cf. Theorem 5.2). Some of the resulting
PDIRK methods turn out to be only A(α)-stable, however with α close to 90◦.
In Table 5.2, we collect a few methods with good stability properties.

corrector attainable order p # effective stages stability

Gauß/Radau IIA p ≤ 5 p− 1 strongly A-stable
Gauß/Radau IIA p = 6, 7 p− 1 A(α)-stable, α > 83◦

Radau IIA p = 3, 5, 7 p L(α)-stable, α > 89◦

Table 5.2: PDIRK methods with a non-constant D-matrix.

49

Diagonal iteration until convergence

PDIRK methods with a fixed number of iterations, as considered in the previous
subsection, are in fact special DIRK methods. DIRK methods possess a so-
called stage order equal to 1 which, in general, drastically reduces the accuracy.
As a matter of fact, in many stiff problems the actually observed order equals
the stage order (or, sometimes the stage order + 1). As a consequence of this
so-called order reduction phenomenon, the relevance of methods with a high
classical order but a low stage order is questionable. Therefore, apart from the
“fixed-m-strategy” we also consider the approach where the corrector is iterated
until convergence. This implies that we can rely on all the characteristics of the
corrector, like stability and accuracy behaviour and, in particular, the stage
order. For example, s-stage IRK methods of Gauß and Radau type both have
stage order s.

Having decided to solve the corrector, we can now consider (5.23) as an
iteration process, where “iteration” has the classical meaning. This leads us
automatically to a criterion for choosing the matrix D: this matrix should be
such that we have fast convergence in (5.23).

It is easy to show that the iteration error Y − Y (j), in first approximation,
satisfies the recursion

Y − Y (j) = Z(z)[Y − Y (j−1)], j = 1, . . . ,m, z := hλ, (5.28)

where the iteration matrix Z is defined by

Z(z) := zD[I − zD]−1[D−1A− I]. (5.29)

Here, λ denotes an approximation to the derivative ∂f/∂y and should be un-
derstood to run through the spectrum of the Jacobian matrix in case of systems
of ODEs. The convergence behaviour of (5.23) is determined by the iteration
matrix Z and we have the matrix D at our disposal to obtain fast convergence.

The main difficulty in choosingD is that Z depends on z, i.e., on the problem.
Therefore, we cannot expect to find a uniformly “best” D-matrix. In [21],
several possibilities are discussed to obtain a D-matrix leading to a satisfactory
convergence behaviour.

A numerical example

To obtain insight in the actual performance of these parallel Runge-Kutta meth-
ods, we have tested a parallel implementation of a PDIRK method based on the
strategy described above. For the corrector, we selected the 4-stage Radau IIA
method. The predictor Y (0) is obtained by extrapolating approximations ob-
tained in the preceding step. It is to be expected that this will result in fewer
iterations compared with the “trivial” predictor Y (0) = yne. We equipped
this method with a provisional strategy for error control and stepsize selection

50

(details concerning the implementation strategy can be found in [36]). The
resulting code is termed PSODE.

We have implemented PSODE on the Alliant FX/4 computer (four parallel
processors and shared memory) and applied it to several test problems. The
goal of these tests is twofold: (i) we want to investigate to what extent the
theoretical parallelisation can be realised in practice; in other words, how close
we can approach the ideal speed-up factor 4 on this four-processor machine and
(ii) we want to compare the performance of the code PSODE with that of a good
sequential solver. To that purpose we select the recent (sequential) code RADAU5

of Hairer & Wanner [18]. This choice is motivated by the observation that it
solves a Radau IIA method (viz., the 3-point, 5th-order one); this starting point
is quite similar to that of PSODE, although the approach to obtain the Radau-
solution is completely different. Furthermore, we included in our tests the code
LSODE of Hindmarsh [20]. This code (based on the BDF formulas which are of
linear multistep type) has formulas up to order five available, from which only
those of first and second order are A-stable. Hence, LSODE is less robust as a
general stiff solver, but, on the other hand, it is generally accepted as a good
sequential solver and enjoys considerable usage over a long period.

In comparing the parallel code PSODE with the two sequential codes, we do
not take into account effects originating from a possible “parallelisation over the
loops”. By this we mean that a long loop is cut into s smaller parts which are
then assigned to the s processors. In the Introduction on page 42 this effect is
termed “parallelism across the problem” and can in fact be used by any ODE
solver. Here we merely want to test intrinsic parallelism (called “parallelism
across the method”). In order to exclude the effects of “parallelism across the
problem”, LSODE and RADAU5 are run on a single processor. In fact, the amount
of intrinsic parallelism offered by LSODE and RADAU5 is very modest.

Of course, if one is interested in “parallelism across the problem”, then the
sequential codes could be implemented on an s-processor machine. However,
in that case a fair comparison would require assigning 4s processors to PSODE,
since in each of the four concurrent subtasks of PSODE, the “parallelism across
the problem” can equally well be exploited (cf. the Introduction on page 42,
where we have mentioned that both parallelisation techniques are independent).

Summarizing, we may say that PSODE needs four times the number of pro-
cessors given to a sequential code, simply because it possesses a 4-fold amount
of intrinsic parallelism. The large number of processors utilised by PSODE re-
flects the current tendency in parallel computing, since modern architectures −
and certainly those entering the market in the coming years − have an “almost
unlimited” number of processors (massive parallelism).

Another aspect which is of utmost importance for the performance of a stiff
code, is the amount of linear algebra per step, which in turn strongly depends
on the dimension of the ODE. Prior to the discussion of our test problem, we
will briefly comment on the characteristics of the various codes with respect to
this aspect:

51

A common feature of the three codes is that they need from time to time
an LU decomposition of the matrix involved in their respective iteration pro-
cesses to solve the non-linear relations. Since the factorisation of a general N -
dimensional matrix requires approximately 2N3/3 arithmetic operations, this
will dominate the total costs of the integration for large-scale problems. In this
connection we remark that both LSODE and PSODE deal with matrices of di-
mension N . Hence, it is to be expected that their mutual comparison is only
marginally influenced if N increases and all other aspects are left unchanged.

Matters are different for the code RADAU5, since it has to deal with matri-
ces of dimension 3N . By exploiting the special structures in these matrices,
Hairer and Wanner are able to reduce the total work of the LU decomposi-
tion to 10N3/3 operations [18], thus gaining a factor 5 compared with a direct
treatment, which would have required 2(3N)3/3 operations. However, this num-
ber 10N3/3 compares unfavourably with the number 2N3/3 (associated with
LSODE and PSODE), and causes a serious drawback for RADAU5 when applied to
large-scale problems.

To get an indication of the performances of the codes, we have applied them
to a test problem originating from circuit analysis. This problem, which is
extensively discussed in [17, p. 112], describes a ring modulator, that mixes
a low frequency and a high frequency signal, resulting in a heavily oscillating
solution. The resulting stiff system consists of 15 ODEs, some of which are
strongly non-linear. Not yet fixed is the value of the capacity Cs. In our test,
we give it the value 10−9, which seems technically meaningful. It is reported in
[17] that small Cs-values cause serious difficulties. In the limit, i.e., on setting
Cs ≡ 0, we end up with a differential-algebraic system. The integration interval
in our test is [0, 10−3]. For several values of TOL (the local error bound) the
results obtained by the codes RADAU5, LSODE and PSODE are collected in Table
5.3. Here, T1 and T4 denote the CPU time (in seconds) when the program
is run on one and four processors, respectively. Recall, that we restrict the
timings for the sequential codes to T1. The accuracy is measured by means of
∆, which is defined by writing the maximum norm of the global (relative) error
in the endpoint in the form 10−∆. Furthermore, Nsteps denotes the number of
(successful) integration steps and m stands for the average number of (effective)
iterations (and thus also f -evaluations) per step.

These results give rise to the following conclusions:

(i) with respect to our first goal, we see that the speed-up factor for PSODE
(obviously defined by T1/T4) is approximately 3.7, which is pretty close
to the “ideal” factor 4 on this machine. This factor rapidly converges to
4 if the dimension of the problem increases.

(ii) concerning our second goal, we observe a remarkable similarity between
RADAU5 and PSODE: both codes need approximately 7 iterations per step;
moreover, to produce the same accuracy, the required number of steps

52

Method TOL Nsteps m ∆ T1 T4

RADAU5 10−2 1275 9.0 1.1 33.1
10−3 2277 7.6 2.6 48.6
10−4 3922 6.7 3.8 72.4
10−5 6761 6.1 4.9 110.9

LSODE 10−3 7054 1.5 1.4 33.6
10−4 9772 1.4 2.8 44.1
10−5 13266 1.4 2.9 57.7
10−6 17887 1.3 3.8 74.7
10−7 23310 1.3 4.5 93.1
10−8 30253 1.2 4.9 114.3

PSODE 10−2 1185 7.3 1.4 80.0 21.4
10−3 1561 7.3 3.1 104.5 27.8
10−4 2272 7.1 4.1 146.4 39.6
10−5 3437 6.9 5.2 212.1 57.7

Table 5.3: Performance of the codes RADAU5, LSODE, and PSODE for the circuit
problem.

is of the same order of magnitude (for the more stringent values of TOL,
the difference in the number of steps increases, which is probably due to
the higher order of PSODE). There is however a striking difference between
the two Radau-based codes and LSODE; this code is very cheap per step,
but needs much more integration steps to produce the same accuracy.
For example, to obtain a relative accuracy of about 5 digits, PSODE needs
≈ 3400 steps, RADAU5 twice as many, whereas for LSODE this number is
9 times as large. Taking into account the computational effort per step
of the various codes, the comparison with PSODE yields a double amount
of time both for LSODE and RADAU5. Approximately the same ratios are
observed in the low-accuracy range (say, ∆ = 3).

As mentioned before, this example is only a model problem describing a
small (part of an) electrical circuit, and is still far away from a real-life appli-
cation. However, even for this small system of ODEs, the performance of (this
provisional version of) PSODE is already superior by a factor of 2 to that of the
(well-established) codes LSODE and RADAU5.

Summarizing, we can say that

– the PSODE-approach is much more promising to serve as the basis for an ef-
ficient, “all-purpose” stiff solver than the LSODE-approach. This is due to
the improved mathematical qualities, viz., the high order in combination

53

with A-stability.

– In comparison with RADAU5, PSODE has the advantage that in large-scale prob-
lems, the (dominating) LU factorisations require a factor 5 less compu-
tational effort. In this connection we remark that a few preliminary ex-
periments with a problem of dimension 75 reveal that the overall gain of
PSODE is already more than a factor 4. For really large-scale problems we
expect that the speed-up factor will be in the range 6–8, depending on
the required accuracy. This number is composed of the asymptotic factor
5 coming from the linear algebra part and the remaining factor 1.2–1.6
originating from the higher order of PSODE.

Conclusions

It has been shown that iterating a fully implicit RK method leads in a natural
way to parallel integration methods. This approach can be used both for stiff
and non-stiff ODEs. Although it is conceptually not necessary to start with
a fully implicit RK method, such IRKs are an excellent choice to serve as a
method, underlying the iteration process.

In the non-stiff case, the Gauß methods are recommended because of their
highly accurate behaviour. Moreover, the optimal order of these IRKs with
respect to the number of stages, minimises the number of required processors.
Following this approach, it is possible to construct explicit RK methods for
which the (effective) number of stages equals the order. This property holds
for an arbitrarily high order and is principally impossible within the class of
sequential explicit RK methods.

For stiff equations, a stiffly accurate IRK is a good choice; in particular,
Radau IIA methods are suitable candidates. In the stiff case, the parallel,
diagonally-implicit iteration leads to methods with nice features, both from a
computational and a mathematical point of view. The property that only one
matrix of the ODE dimension has to be factorised per step, reduces the amount
of linear algebra to an acceptable level. We have seen that performing a fixed
number of iterations results in L-stable methods with a high classical order,
but with a (at least, formally) low stage order. Alternatively, iterating until
convergence yields a high classical order as well as a high stage order. Moreover,
already after a modest number of iterations, these methods are unconditionally
stable.

Exercise 5.10 For the explicit PDIRK methods (i.e., with D = O), it is said
(in the sentence following Theorem 5.1) that they belong to the class of explicit
Runge-Kutta methods. Verify this statement, using the general definition (5.19)
and (5.20). 2

54

Exercise 5.11 Furthermore, it is said that these RK methods have s ·m + 1
stages. At first sight this is a bit surprising since m iterations of (5.23), each
containing s stages, seem to result in s(m + 1) stages. Show that the number
s ·m+ 1 is correct indeed. 2

Exercise 5.12 The central part of these explicit, parallel RK methods is given
by the iteration (cf. (5.23)):

Y(j) = yne + hAf(Y(j−1)), j = 1, . . . ,m.

Write a piece of Fortran-code for this central part; choose your data structures.
2

Exercise 5.13 Verify that for a stiffly accurate corrector (which satisfies bT =
eT
s A), the step point formula (5.27) is the correct analogue of (5.26). 2

Exercise 5.14 As said, the code RADAU5 is based on a 3-point (fully implicit)
Radau IIA method. Hence, it requires in each step the solution of the system
(cf. (5.22))

Y − yne− hAf(Y) = 0.

The application of a modified Newton process requires the solution of linear
systems of the form I−a11hJn −a12hJn −a13hJn

−a21hJn I−a22hJn −a23hJn
−a31hJn −a32hJn I−a33hJn

x = b, (5.30)

where Jn denotes the Jacobian matrix ∂f
∂y (yn), x denotes the correction in this

particular Newton iteration, and b is a known righthand side vector (depending
on the previous Newton iteration). Notice that this matrix is of dimension 3N ;
hence, assuming that Jn is a full matrix, an LU factorisation of the matrix in
(5.30) would require 2

3 (3N)3 floating-point operations.

Hairer and Wanner suggest some transformations for the system (5.30) (details
can be found in [18, p. 131]) ending up with the modified system γI − Jn 0 0

0 αI − Jn −βI
0 βI αI − Jn

 x̃ = b̃, (5.31)

where γ and α±iβ respectively are the real and complex eigenvalues of h−1A−1.

a. Show that the total work of the LU factorisation can be reduced to 10
3 N

3

by transforming the real subsystem of dimension 2N into the N -dimensional
complex system

[(α+ iβ)I − Jn](x̃2 + ix̃3) = b̃2 + ib̃3.

55

b. Show that on a 2-processor machine, this code possesses a small amount of
inherent parallelism by which the effective number of operations can be further
reduced to 8

3N
3. 2

5.2.7 Partial differential equations

We illustrate two important vectorisation/parallelisation techniques on rather
simple iterative solution methods for partial differential equations. In general
one uses (preconditioned) Conjugate Gradient methods, multigrid methods or
GMRES, just to name three of the more popular methods, to solve PDEs (see
also Section 5.2.5). On the other hand, the relaxation methods we discuss, can
be used as preconditioner for Conjugate Gradient methods or as smoother for
multigrid methods.

We consider the Poisson equation on an n× n grid

uxx + uyy = f.

Discretisation with central differences gives us

1
h2

(ui+1,j − 2ui,j + ui−1,j) +
1
h2

(ui,j+1 − 2ui,j + ui,j−1) = fi,j.

The resulting n2×n2 matrix of the discrete system will have the following sparse
structure:

@
@@
@
@@
@
@@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@@
@
@@
@
@@
@
@@

@
@

@
@

@
@

@
@

@
@

@
@@
@
@@
@
@@
@
@@

It is not very attractive to use a direct solver because of the fill-in in the original
sparse matrix. The matrix will become dense between the two outer diagonals;
so we will need much more storage but also the complexity O(n4) will be more
than the complexity for say multigrid O(n2).

Two well-known iterative methods are Jacobi-relaxation and Gauß-Seidel-
relaxation.

In a Jacobi step we compute a new approximation u′ of the solution as
follows:

for j = 1 to n
for i = 1 to n

u′i,j := − 1
4 (h2fi,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1)

56

It is clear that all computations are completely uncoupled: if we compute
a new u-value for a grid-point we only use already existing information. The
algorithm is completely vectorisable and by distributing the work over multiple
processors also completely parallelisable. The (collapsed) loop-length is n2.

From a numerical point of view we can do better: instead of using old
information, we can use new information the moment it becomes available. A
Gauß-Seidel step using lexicographical ordering looks as follows:

for j = 1 to n
for i = 1 to n

u′i,j := − 1
4 (h2fi,j − ui+1,j − u′i−1,j − ui,j+1 − u′i,j−1)

Now we obtain a better convergence, but the computations have become
data dependent: for the computation of u′i,j we need the just computed value
of u′i−1,j.

We will discuss two possibilities to improve on Jacobi relaxation with respect
to both convergence and vectorisation/parallelisation: red-black relaxation and
the hyperplane method. Both methods are based on re-ordering of the compu-
tations.

If we stay with Gauß-Seidel relaxation using the lexicographical ordering
described above, we observe that we use already updated values from west-
neighbours and south-neighbours in order to compute a new value. So if we
perform our operations using a diagonal-ordering of the grid-points (i+ j = d)
we see that we only need the just updated values on the previous diagonal
(i+ j = d− 1) and old values on the current and next diagonal.

for d = 2 to 2n
for all (i, j) ∈ {(i, j)|i+ j = d}

u′i,j := − 1
4 (h2fi,j − ui+1,j − u′i−1,j − ui,j+1 − u′i,j−1)

The computations in the for all-loop are uncoupled so completely vectorisable
and by distributing the work also parallelisable. We have 2n− 1 vector/parallel
loops with an average length of n/2. The outer loop is still data dependent.
This technique is known as the hyperplane method.

Another possibility for improving on Jacobi relaxation is obtained by using
a checkerboard (or red/black) ordering:

57

s s s s s
s s s s s
s s s s s
s s s s s
s s s s s

s s s s
s s s s
s s s s
s s s s

c c c c
c c c c
c c c c
c c c c
c c c c

c c c c c
c c c c c
c c c c c
c c c c c

We notice that when we perform a Jacobi update of an u-value on a white
grid-point we only use u-values on the neighbouring black grid-points and vice
versa. So, the first half step we update all values on the white grid-points
simultaneously using only u-values on black grid-points. The second half-step
we use the — just updated — u-values on the white grid-points in order to
update the u-values on black grid-points. It is clear, that every half-step is
completely vectorisable/parallelisable with a loop-length of n2/2. This loop-
length is slightly worse than in the Jacobi-case, but much better than in the
Gauß-Seidel-case.

Exercise 5.15 Construct a colouring-scheme for a 9-point discretised 2-dimensional
PDE, (so ui+1,j+1, ui−1,j+1, ui−1,j−1, and ui+1,j−1 also occur in the discrete
system) such that all work of a Gauß-Seidel like relaxation can be performed
completely decoupled during the subsequent intermediate Jacobi steps (analo-
gous to the red/black ordering for 5-point stencils). 2

58

5.3 Nonnumerical algorithms

5.3.1 Sorting

Complete books, e.g. [23], are devoted to sorting and much work is done on
parallel sorting methods and parallel sorting networks. In this subsection we
discuss the vectorisation of quicksort [23] and we demonstrate a parallel sorting
method.

At first sight, sorting does not seem to be a natural algorithm for vectori-
sation. Since we want to discuss vectorisation we restrict ourselves to sorting
numerical data. Quicksort is an attractive sorting algorithm on scalar com-
puters. Perhaps surprisingly this algorithm can be fully vectorised. Instead of
giving a completely vectorisable algorithm in pseudo-code, we discuss the heart
of the quicksort algorithm.

The basic idea is to pick a number in the array to be sorted and move this
number to its final position in the sorted array. While determining this position,
we move all smaller numbers to the left and all larger numbers to the right of
the number we picked. Thus the array is partitioned in such a way, that we can
apply the same algorithm recursively on the left part and on the right part of
the array, until the whole array has been sorted.

For example, consider an array x of eight elements: 55 19 60 95 45 26 75 14.
We pick the first element x1 = 55 and use two pointers i = 2, and j = 8, initially.
Increase i until xi becomes greater than x1; decrease j until xj becomes less
than x1. At this point we interchange xi and xj . Repeat until j becomes less
than i. Now we interchange x1 and xj . We end up with a partitioned array.

initial array 55 19 60 95 45 26 75 14
initial pointers i ↑ j ↑
1st exchange 14 60
2nd exchange 26 95
j < i j ↑ i ↑
partitioned array [45 19 14 26] 55 [95 75 60]

Quicksort is sometimes called partition-exchange sorting. The searching in the
exchanging part is fully vectorisable — in fact the complete partitioning can be
rewritten in terms of compress operations. On the Cyber-205, it could even be
performed using a special machine-instruction: the so-called arithmetic com-
press instruction.

Parallel sorting is a completely different story. The computational complex-
ity for optimal sorting algorithms on a single processor is O(n logn), whereas
merging two sorted arrays, of length m and n, has complexity O(bm+n−1

2 c).
A divide-and-conquer technique can be applied. We consider a shared-memory
two processor machine. Furthermore, we assume that the to-be-sorted array

59

has been divided in two parts x and y, of length m and n, respectively, and
each processor has already (quick)sorted its own part. Trivially, sorting of x
and y can be performed completely in parallel. For the following step we use a
so-called “odd-even merge” algorithm.

Say we have x1, x2, . . . , xm (quick)sorted by processor p1, and y1, y2, . . . , yn
(quick)sorted by processor p2. Now processor p1 can merge the “odd sequences”
x1, x3, . . . , x2dm/2e−1 and y1, y3, . . . , y2dn/2e−1 obtaining the sorted result
v1, v2, . . . , vdm/2e+dn/2e; analogously processor p2 can merge the “even sequences”
yielding the sorted result w1, w2, . . . , wbm/2c+bn/2c. Both of these merges can
be performed in parallel. Finally, both processors can work simultaneously on
the comparison-interchange operations

v1, w1 : v2, w2 : v3, w3 : v4, . . . , wbm/2c+bn/2c

the result will be sorted. For example, consider the following array:

14 75 95 45 26 60 19 55 96 57 06 89 79 25 44 89

divide it in two parts x and y:

x: 14 75 95 45 26 60 19 55
y: 96 57 06 89 79 25 44 89

(quick) sort both parts independently:

x: 14 19 26 45 55 60 75 95
y: 06 25 44 57 79 89 89 96

merge the odd subsequences on p1:

v: 06 14 26 44 55 75 79 89

merge the even subsequences on p2:

w: 19 25 45 57 60 89 95 96

compare-interchange using both processors:

06,
19:14, 25:26, 45:44, 57:55, 60:75, 89:79, 95:89,
96.

Finally, the sorted result will be:

06 14 19 25 26 44 45 55 57 60 75 79 89 89 95 96.

Exercise 5.16 Describe how we could use the (level 1 BLAS) ISAMAX rou-
tine (completely vectorisable) to sort an array of positive REALs. Analyse the
complexity of this algorithm and compare the result with quicksort. 2

60

5.3.2 Factorisation

Factorisation of integers is a classical problem in number theory. After the
discovery, in 1978, by Rivest, Shamir and Adleman, of certain cryptosystems,
the security of which depends on the difficulty of factoring large integers, the
factorisation problem has enjoyed renewed and wide-spread interest. The com-
putational complexity of factorisation is not known, but practical experience
with the fastest known factoring methods indicates that the work to factorise a
number N grows exponentially with N .

Since Euclid’s time it has been known that any natural number has a unique
prime power decomposition N = pα1

1 pα2
2 . . . pαkk (p1 < p2 < . . . < pk being

primes, and αj being positive integers), and for many purposes one likes to
know an efficient algorithm for finding this decomposition. Note that if we have
an algorithm to find a non-trivial factor f of N this can be applied recursively
to obtain the complete prime power decomposition of N . Of course, if N itself
is a prime number, we are finished. From now on we assume that the number
N we want to factorise is composite. This can be checked in practice very easily
by selecting a (small) number a which has no common divisor with N , and by
computing b = aN−1 mod N . If b 6= 1 then we are sure that N is composite.
If b = 1, N will be prime in most, but not in all cases. The number b can be
computed in O(log(N)) steps by looking at the binary representation of N . For
details we refer to [31].

Some known factorisation algorithms are not suited, some others turn out
to be very well-suited to parallelisation. Here we describe two simple factor-
ing algorithms, “trial division” and “Pollard rho”, and discuss their parallel
implementation.

Trial division

Trial division is a straightforward factorisation algorithm. One just tries poten-
tial divisors d = 2, 3, . . . until one of the following events occurs:

[N is prime] d > N1/2, in which case N is prime; or

[N is composite] d < N and d|N , in which case d is a non-trivial prime
divisor of N ; or

[not yet finished] d exceeds some preassigned bound B < N1/2, in which
case we only can say that any prime factor of N exceeds B.

Of course this can be refined, by just using the primes as trial divisors,
but if B is large this can cause severe side problems of computing and stor-
ing these primes. A more simple refinement is possible if N is odd and N 6=
0 mod 3; in that case we can let d run through the integers ≡ 1, 5 mod 6, or
≡ 1, 7, 11, 13, 17, 19, 23, 29 mod 30.

61

The parallel implementation of trial division is straightforward. With P
processors we can perform up to P trials in parallel. Thus, provided that P � p,
where p is the smallest prime divisor of N , a linear speed-up is obtained.

Exercise 5.17 Write a program to factorise numbers with the trial method
where the trial divisors d run through a sequence of integers which are not
divisible by 2, 3, 5, 7. Apply this to the number N = 9904156957. 2

The Pollard “rho” algorithm

Pollard’s “rho” algorithm uses an iteration of the form xi+1 = f(xi) mod N ,
i ≥ 0, where N is the number to be factorised, x0 is a random starting value,
and f is a polynomial with integer coefficients, for example, f(x) = x2 + a
(a 6= 0 mod N).

Let p be the smallest prime factor of N , and j the smallest positive index
such that x2j = xj mod p. We can expect that j = O(p1/2). The argument for
this expectation is related to the well-known “birthday-paradox” (if you have
a class with 30 children, the probability that at least two of them have the
same birthday date is nearly 0.7). Of course, we do not know p in advance,
but we can detect xj by taking greatest common divisors as follows. We simply
compute gcd(x2i − xi, N) for i = 1, 2, . . . and stop as soon as some gcd > 1
is found. (The greatest common divisor gcd of two numbers a and b can be
computed efficiently by means of Euclid’s algorithm, which is based on the
relation gcd(a, b) = gcd(a mod b, b). Since 0 ≤ a mod b < b we can apply this
relation, after interchanging the arguments, repeatedly until we find a mod b =
0. The number of steps is O(log(max(a, b))).)

Parallel implementation of this algorithm does not give linear speed-up. One
possibility is to try several different pseudo-random sequences (generated by
different polynomials f). If we have P processors and use P different sequences
in parallel, the probability that the first k values in each sequence are distinct
mod p is approximately exp(−k2P/(2p)), so the speed-up is O(P 1/2) and the
efficiency is only O(P−1/2).

Exercise 5.18 Write a program to factorise numbers with the Pollard rho
method on P processors for some small values of P ≥ 2 (choosing f(x) = x2 +a
for various values of a) and apply this to the number N = (1017 − 1)/9. Com-
pare the speed-up with the expected one. Note that you need multiprecision
routines to compute f(x) mod N . 2

62

5.4 Systolic Algorithms

In this section we briefly present one kind of parallel algorithms which are par-
ticularly suitable for implementation on distributed-memory parallel computers.
This suitability emanates from the uniform granularity of the processes involved
and the need for only local synchronised communication between the processors
they are mapped onto. These algorithms are generally referred to as systolic
algorithms, a concept which became very popular in the last decade, though
the original motivation was driven by the potential advantages for direct VLSI
implementation rather than parallel computer implementation. In the following
we present an example of a systolic algorithm, show how this algorithm can be
expressed in a high-level programming language with parallel constructs and
finally comment on the general properties of systolic algorithms and refer the
reader to further literature on this topic.

The matrix multiplication algorithm presented below is due to L. E. Can-
non [3] and was conceived a decade before the term “systolic algorithm” was
introduced in computer science. It was developed for the needs of a specific ap-
plication, Kalman filtering , in time when parallel computing was considered to
be a rather exotic research activity. Twenty years later this algorithm became
the basis of matrix multiplication subroutines for several very powerful parallel
computers which present the state of the art in high-performance computing and
are extensively used by the scientific research community. In this context, this
parallel algorithm is a good example of the usefulness of algorithmic research
on the long-term.

Cannon’s algorithm applies to the multiplication of square n× n matrices

ci,j :=
n∑
k=1

ai,kbk,j , i = 1, . . . , n; j = 1, . . . , n

written more concisely as

C := A.B .

The algorithm maps most naturally onto a square processor array of size
n× n with torus interconnections but can also easily be adapted to other par-
allel system models such as a linear array of n processors, a hypercube of n2

processors, an X-net or a fat tree interconnected system, etc. As it will be shown
in the following, Cannon’s matrix multiplication algorithm can be encoded in a
series of data-parallel elemental and communication operations with data arrays
without any reference to the way in which these operations are realised on a
concrete parallel computer. The only requirement for an efficient implementa-
tion is that the elements of a matrix can be distributed in such a way among
the processors of a parallel computer, that circular shifts by one position along
the rows and columns of a matrix can be done in time that is small as compared
with the time needed for one elemental array multiplication and one addition.

63

Figure 5.7a shows the distribution of the elements of an n × n matrix A
among the n2 processors of a parallel computer. For the present, no assump-
tions are made for the interconnection pattern and the processors are shown
arranged in a two-dimensional square grid which corresponds to the usual way
of visualizing a matrix. Figure 5.7b shows a conform distribution of the elements
of three matrices A, B and C. “Conform” means that counterpart matrix el-
ements, i.e., matrix elements with the same subscript pair such as a2,3, b2,3
and c2,3, are mapped onto the same processor. Cannon’s algorithm requires a
different starting distribution of the elements of the matrices A, B and C and
this distribution is shown in Figure 5.7c. While the matrix C is distributed
as normally, the elements of A and B are rearranged with respect to C. More
precisely, the elements of the ith row of A and the jth column of B are shifted
cyclically by i − 1 and j − 1 positions to the left and upwards, respectively
(i = 1, . . . , n, j = 1, . . . , n).

Here we are not concerned with the problem of how this rearrangement can
be carried out on a particular parallel computer. On a 2-D torus, for instance,
a circular shift by i− 1 positions, i < n/2, can be carried out as a series of i− 1
elementary shifts by one position and thus require time O(i). For i ≥ n/2, the
shift can be realised by n − i + 1 elementary shifts. The worst case is given
by the middle row of A and middle column of B which have to be circularly
shifted by n/2 positions, a process which requires time O(n). On a system of
hypercube-connected processors, the necessary matrix elements rearrangements
can be realised more efficiently as series of shifts at distances which are powers
of two. On a hypercube the latter shifts can be carried out in constant time,
and therefore the total time required for rearranging the matrices A and B will
be O(log n).

Cannon’s algorithm starts with the data distribution shown in Figure 5.7c
and involves a series of n steps in each of which each processor computes the
product of the components of A and B it currently has and accumulates the
result in the component of C which is permanently assigned to it. After that
each processor forwards the components of A and B it has to the West and
North neighbours replacing them by components it receives from the East and
South, respectively. This processor function for one step is specified in Figure
5.8. The left-most column and the top row of processors forward data to the
right-most column and the bottom row, respectively.

Figures 5.9 and 5.10 illustrate the movement of data and the computation
of products for the case of 4 × 4 matrices (n = 4). Note that the efficient
execution of the algorithm, in particular the realisation of the circular column
and row shifts, requires that the processors which hold matrix components with
neighbouring subscript values, e.g. a2,3 and a2,4 or a2,3 and a3,3, communicate
directly. The same requirement holds for matrix elements which are neighbours
in modulo n sense, e.g. ai,n and ai,1 or bn,j and b1,j (i = 1, . . . , n; j = 1, . . . , n).
This effectively means that the processors have to be interconnected in torus
or that the torus is a subgraph of the connectivity graph of the system as for

64

a b
c

a b
c

a b
c

a b
c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

1,1 1,1

1,1

1,2 1,2

1,2

1,3 1,3

1,3

1,4 1,4

1,4

2,1 2,1

2,1

2,2 2,2

2,2

2,3 2,3

2,3

2,4 2,4

2,4

3,1 3,1

3,1

3,2 3,2

3,2

3,3 3,3

3,3

3,4 3,4

3,4

4,1 4,1

4,1

4,2 4,2

4,2

4,3 4,3

4,3

4,4 4,4

4,4

a a a a

a a a a

a a a a

a a a a

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

a b

c

1,1 1,1

1,1

1,2

1,2

1,2

1,3

1,3

1,3

1,4

1,4

1,42,1

2,1

2,1

2,2

2,2

2,2

2,3

2,3

2,3

2,4

2,4

2,4

3,1

3,1 3,1

3,2

3,2

3,2

3,3

3,3

3,3

3,4

3,4

3,4

4,1

4,1 4,1

4,2

4,2

4,2

4,3

4,3

4,3

4,4

4,4

4,4a b

c

a)

c)

b)

Figure 5.7: Distribution of a matrixA (a), conform distribution of three matrices
A, B and C (b), and distribution required for Cannon’s matrix multiplication
algorithm (c).

65

a’

b’

ain b in

a ’ a in

b’ b in

a in

bin

c in := c in+ * ;

; := a ;

; := b ;

:=

:=

b

ina in b
c in

a

Figure 5.8: Processor function for Cannon’s matrix multiplication algorithm

instance is the case of hypercube interconnections. Such interconnections are
assumed to be given in Figures 5.9 and 5.10.

As far as the components of A and B are concerned, the effect of the cell
function, the interconnection pattern and the starting distribution shown in
Figures 5.7c and 5.9a is that the rows of A and the columns of B circulate
in the rows and columns of the torus, respectively. The movement of data is
synchronised, i.e., all rows of A are shifted synchronously by one position to the
left and at the same time all columns of B are shifted by one position upwards.
Then a local computation follows which is executed in all processors and then
the communication procedure is repeated again, followed by computations, etc.

The algorithm is quite simple to understand, if it is analysed on a row-
by-row basis for the matrix A and column-by-column basis for the matrix B.
Let us, for instance, consider the first row of A and the first column of B.
At the beginning of the algorithm, the components of the first row of A and
the first column of B are arranged in the “normal” order in the top row and
leftmost column of processors, respectively. In the first step (t = 1), their first
components a1,1 and b1,1 are in the top-left processor where the product a1,1b1,1
is computed and accumulated in the variable c1,1 which resides permanently in
this processor (Figure 5.9b). Since the first row of A is shifted to the left and
the first column of B is shifted upwards, a1,2 and b2,1 meet in the considered
processor in the next, second step. There they are multiplied and their product
is accumulated in c1,1 (Figure 5.9c). In a similar way, the other components of
the first row of A and the first column of B pass through the top-left processor
where they are multiplied with each other and their products are accumulated
(Figure 5.10d and 5.10e). In this way, in n clock periods the innerproduct of
the first row of A with the first column of B is computed and assigned to c1,1
in the top-left processor.

Now, note that since the first row of A is shifted circularly to the left, all
components of this row of A pass through all processors of the first row of the
processor array. Only the sequence in which this is done differs from processor
to processor. The component a1,2, for instance, enters the second processor at
time (step) t = 1, followed by a1,3 at t = 2, . . . , a1,n at t = n− 1 and finally by
a1,1 at t = n. Since the components of the second column of B reside in the

66

1,2

1,3

1,4

1,4

1,42,1

2,1 2,2 2,3

2,3

2,4

2,4

3,1

3,1

3,2

3,2

3,3 3,4

3,4

4,1

4,1

4,2

4,2

4,3

4,3

4,4

4,4a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1

1,1

1,2

1,2

1,3

1,3

b 3,3b 2,2b 1,1 b

2,2 b
c

2,3 b
c

2,4 b
c

2,1 b
c

3,3 b
c

3,4 b
c

3,1 b
c

3,2 b
c

4,4 b
c

4,1 b
c

4,2 b
c

4,3 b
c

* * * *

* * * *

* * * *

* * * *

1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1 1,2 1,3

bbb b

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

1,2 1,3 1,4 1,1

2,3 2,4 2,1 2,2

3,4 3,1 3,2 3,3

4,1 4,2 4,3 4,4

2,1

3,1

4,1

1,1

3,2

4,2

1,2

2,2

4,3

1,3

2,3

3,3

1,4

2,4

3,4

4,4

* * * *

* * * *

* * * *

* * * *

1,2

1,3

1,4

1,4

1,42,1

2,1 2,2 2,3

2,3

2,4

2,4

3,1

3,1

3,2

3,2

3,3 3,4

3,4

4,1

4,1

4,2

4,2

4,3

4,3

4,4

4,4a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1

1,1

1,2

1,2

1,3

1,3

b 3,3b 2,2b 1,1 b

2,2 b
c

2,3 b
c

2,4 b
c

2,1 b
c

3,3 b
c

3,4 b
c

3,1 b
c

3,2 b
c

4,4 b
c

4,1 b
c

4,2 b
c

4,3 b
c

a) t

b) t

c) t

= 0

= 1

= 2

Figure 5.9: Data flow and computational activities

67

1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1 1,2 1,3

bbb b

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

1,11,4 1,31,2

2,22,1 2,42,3

3,2

4,3

3,1

4,2

3,4

4,1

3,3

4,4

4,1

3,1

2,1

1,1

1,2

4,2

3,2

2,2

2,3

1,3

4,3

3,3

3,4

2,4

1,4

4,4

* * * *

* * * *

* * * *

* * * *

1,2

1,3

1,4

1,4

1,42,1

2,1 2,2 2,3

2,3

2,4

2,4

3,1

3,1

3,2

3,2

3,3 3,4

3,4

4,1

4,1

4,2

4,2

4,3

4,3

4,4

4,4a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1

1,1

1,2

1,2

1,3

1,3

b 3,3b 2,2b 1,1 b

2,2 b
c

2,3 b
c

2,4 b
c

2,1 b
c

3,3 b
c

3,4 b
c

3,1 b
c

3,2 b
c

4,4 b
c

4,1 b
c

4,2 b
c

4,3 b
c

1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

a
c

a a a
ccc

a a a a

aaaa

a a a a

1,1 1,2 1,3

bbb b

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

b
c

1,3 1,11,4 1,2

2,4 2,22,1 2,3

3,1 3,33,2 3,4

4,2 4,44,3 4,1

3,1

1,1

4,1

2,1

4,2

2,2

1,2

3,2

1,3

3,3

2,3

4,3

2,4

4,4

3,4

1,4

* * * *

* * * *

* * * *

* * * *

d) t = 3

e) t = 4

f) t = 5

Figure 5.10: Data flow and computational activities (continued)

68

second column of the array and are shifted circularly upwards, it is possible to
compute the innerproduct of the first row of A with the second column of B. In
order to do that, the components of the second column of B have to enter the
second processor in the top row of the processor array in the correct sequence,
i.e., starting with b2,2 at t = 1 followed by b3,2 at t = 2, . . . , bn,2 at t = n − 1
and finally by b1,2 at t = n. Similar considerations apply to the other rows of
A and columns of B. This suggests an explanation for the particular ordering
(starting data configuration) of the elements of A and B.

In general, the innerproduct of the ith row of A with the jth column of B
is computed in n steps by the processor which holds component ci,j of C. All
such innerproducts are computed in parallel and, therefore, with n2 processors
the algorithm requires n steps. Assuming the torus interconnections are given
and used, each such step takes constant time (independent of n) and, hence, the
total running time isO(n). Of course, the matrix elements rearrangement phase,
in which the starting data configuration is produced, increases the total time.
Using torus interconnections this phase requires time O(n). On a hypercube, it
can be carried out in time O(log n). Although the total running time is increased
by the necessary matrix rearrangements, in both cases the time complexity O(n)
of the algorithm is not worsened.

Note that after n steps the components of A and B are in the same position
as at the beginning of the algorithm (compare Figure 5.9a and Figure 5.10f).
Typically, matrix multiplication will be only one in a series of computations with
the involved matrices. Therefore, the “natural” distribution of the matrices A
and B has in general to be restored after the computations are completed. This
can be done by circular shifting of the ith row of A to the right at a distance
i − 1 (i = 1, . . . , n) and circular downwards shifting of the jth column of B
at a distance j − 1 (j = 1, . . . , n). Similar to the initial rearrangement phase,
this final phase will increase the overall execution time but not worsen the time
complexity of the algorithm.

Similar algorithms can be given in which one of the matrices A and B is
stationary while the other one and the result matrix C move in mutually perpen-
dicular directions. The reader is invited to design such algorithms as an exercise
and referred to [30, chapter 11] for a methodology for the systematic design and
restructuring of parallel systolic algorithms.

Finally we show how Cannon’s algorithm can be encoded in a high-level pro-
gramming language with array constructs. Here follows a Fortran 90 expression
of the algorithm (program rows are labeled for ease of reference):

0 REAL, DIMENSION(n,n) :: a, b, c

10 a = CSHIFT(a, SHIFT = (/0:n-1/), DIM = 2)

11 b = CSHIFT(b, SHIFT = (/0:n-1/), DIM = 1)

20 DO it = 1, n

21 c = c + a*b

69

22 a = CSHIFT(a, SHIFT = 1, DIM = 2)

23 b = CSHIFT(b, SHIFT = 1, DIM = 1)

24 ENDDO

30 a = CSHIFT(a, SHIFT = -(/0:n-1/), DIM = 2)

31 b = CSHIFT(b, SHIFT = -(/0:n-1/), DIM = 1)

Statement 0 is a declaration of three real matrices A, B and C of size n×n.
Statements 10 and 11 realise the necessary rearrangement of the matrices A
and B to achieve required starting data configuration. The parameter DIM in
these statements specifies which of the indices is changed. In statement 10, DIM

= 2 and this means that the second index of A is changed; this is equivalent
to shifting the elements of A along the rows. Similarly, the elements of B are
shifted along the columns (DIM = 1 in statement 11 means that the first, row
index is changing). The parameter SHIFT is a vector which specifies for each row
of A and each column of B the number of positions by which they are shifted.
In this case, SHIFT(i) = i− 1, i = 1, . . . , n, and this means that the ith row of A
and the ith column of B are shifted at distance i− 1.

The actual algorithm, as it is illustrated by Figure 5.9b through Figure 5.9e,
is described by statements 20 through 24 and consists of n steps counted by
the loop counter it (see statement 20). Each step begins with an elemental
array operation (statement 21) in which the component of A at position (i, j) is
multiplied with the component of B at position (i, j) and the result is added to
the component of C which is in the same position (i = 1, . . . , n; j = 1, . . . , n).
Note that the components of A and B at position (i, j) are not necessarily
the components ai,j and bi,j of the original matrices A and B because of the
initial rearrangement phase and later on because of the further rearrangement
operation with these matrices. (Thus for instance, the component of A which is
in position (2, 1) in the first step is a2,2 which is replaced by a2,3 in the second
step and by a2,4 in the third step.) After the elemental array operation specified
by statement 21, the matrix A is shifted cyclically by one position to the left
(statement 22) and the matrix B is shifted cyclically by one position upwards
(statement 23). Note that the parameter SHIFT is a scalar (1) and this means
that all rows of A and all columns of B are shifted at the same distance (of
one).

Finally, the “normal” distribution of A and B is restored by statements 30
and 31 which specify operations that are inverse to those described by statements
10 and 11, respectively. (“Normal” means that the elements of A and B at
position (i, j) are the elements ai,j and bi,j of the original matrices A and B.)

Note that the above program does not specify in any way the number of pro-
cessors in the executing parallel system nor a particular interconnection pattern.
The program is merely a specification of a set of operations to be carried out
with the three matrices involved. These operations can be executed on different
parallel systems and also on any sequential computer. The parallelism inherent
to the algorithm is encoded in data-parallel operations, i.e., operations which

70

are applied to all elements of a data array. The efficient execution of the algo-
rithms, in particular the efficient execution of the data-parallel communication
operations specified by statements 22 and 23, on a distributed-memory parallel
computer requires, however, that the processors of the parallel computer can be
directly connected in a torus.

Finally, we should note that in spite of the expressive power of Fortran 90 and
the rather compact algorithm specification, there are some shortcomings of the
language with respect to the specification of parallel processes. In particular, the
statements in the pairs 10 and 11, 22 and 23, and 30 and 31 will be executed in
the specified sequence whereby in the algorithm they can be executed in parallel.

In Cannon’s algorithm the elements of the matrices A and B are shifted
from processor to processor, covering the same distance in each step. The data
movement is steady in this sense but at the same it is time discontinuous, in that
it is interrupted by the stops of data in the processors for computations. This
movement resembles the pulsing movement of the blood under the contractions
of the heart, called systoles in physiology, and this analogy was the reason to
give such algorithms the attribute systolic [24, 25].

The concepts of a systolic algorithm and a systolic array became very pop-
ular in the beginning of the 1980s. These concepts were introduced in com-
puter science and electrical engineering by means of instances of such algorithms
and models of computing structures for concrete problems such as convolution,
matrix multiplication, computing the inverse of a matrix, etc. The regular-
ity of systolic arrays and the high efficiency of systolic algorithms do not only
have practical implications in VLSI design and parallel computing but do also
strongly appeal to one’s intellect, aesthetic sense and curiosity to “to see behind
the trick”. These were certainly some of the reasons for the fast proliferation
and wide acceptance of these concepts in the computer science and electrical
engineering research communities. One of the effects of the enthusiasm for sys-
tolic algorithms in the past decade was a wave of worldwide activities in this
area. As a result of these activities, a large number of highly efficient systolic
algorithms have been proposed for many computationally intensive problems.
For lack of space it is not possible to even only list here the wealth of results
achieved in this area. Therefore, we close this subsection by referring the reader
to the monograph [30] for a unified representation of a large number of such
algorithms for a wide variety of problems as well as for formal definitions of the
concepts.

Bibliography

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Dunato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadel-
phia, PA, 1993.

[2] J.C. Butcher, The numerical analysis of ordinary differential equations,
Runge-Kutta and general linear methods , Wiley, New York, 1987.

[3] L.E. Cannon, A Cellular Computer to Implement the Kalman Filter Algo-
rithm, PhD Thesis, Montana State University, Bozeman, Montana, U.S.A.,
1969.

[4] P. Chartier, L-stable parallel one-block methods for ordinary differential
equations , SIAM J. Numer. Anal. 31 (2), 552–571, 1994.

[5] M.T. Chu, H. Hamilton, Parallel solution of ODE’s by multi-block methods ,
SIAM J. Sci. Stat. Comput. 8, 342–353, 1987.

[6] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Computing
5, 618–623, 1976.

[7] J.J.M. Cuppen, A divide-and-conquer method for the symmetric tridiagonal
eigenproblem, Numer. Math. 36, 177–195, 1981.

[8] J.W. Demmel, M.T. Heath, H.A. van der Vorst, Parallel Numerical Linear
Algebra, Acta Numerica 1993, 111–197.

[9] D.S. Dodson, J.G. Lewis, Proposed Sparse Extensions to the Basic Linear
Algebra Subprograms, Signum 20, 22–25, 1985.

[10] J. Dongarra, I. Duff, D. Sorensen, H. van der Vorst, Solving linear systems
on vector and shared memory computers, SIAM, Philadelphia, PA, 1991.

[11] I.S. Duff, G.A. Meurant, The effect of ordering on preconditioned conjugate
gradient, BIT 29, 635–657, 1989.

71

72

[12] R. Fletcher, Conjugate gradient methods for indefinite systems, volume 506
of Lecture Notes Math., 73–89, Springer-Verlag, Berlin–Heidelberg–New
York, 1976.

[13] R.W. Freund, G.H. Golub, N.M. Nachtigal, Iterative solution of linear
systems, Acta Numerica 1992, 57–100.

[14] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method
for non-Hermitian linear systems, Numer. Math. 60, 315–339, 1991.

[15] E.D. de Goede, Numerical methods for the three-dimensional shallow water
equations, Doctor’s Thesis, CWI Amsterdam, 1992.

[16] G. Golub, C. Van Loan, Matrix Computations, John Hopkins University
Press, Baltimore, MD, 2nd edition, 1989.

[17] E. Hairer, C. Lubich, M. Roche, The numerical solution of differential-
algebraic systems by Runge-Kutta methods , Lecture Notes in Mathematics
1409, Springer-Verlag, Berlin, 1989.

[18] E. Hairer, G. Wanner, Solving ordinary differential equations, II: Stiff and
differential-algebraic problems, Springer Series in Comp. Math., vol. 14,
Springer-Verlag, Berlin, 1991.

[19] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stand. 49, 409–436, 1954.

[20] A.C. Hindmarsh, LSODE and LSODI, two new initial value ordinary dif-
ferential equation solvers, ACM/SIGNUM Newsletter 15 (4), 10–11, 1980.

[21] P.J. van der Houwen, B.P Sommeijer, Iterated Runge-Kutta methods on
parallel computers , SIAM J. Sci. Stat. Comput. 12, 1000–1028, 1991.

[22] P.J. van der Houwen, B.P. Sommeijer, W. Couzy, Embedded diagonally
implicit Runge-Kutta algorithms on parallel computers, Math. Comp. 58,
135–159, 1992.

[23] D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and
Searching. Addison Wesley, 1973.

[24] H.T. Kung, C.E. Leiserson, Systolic arrays (for VLSI), Sparse Matrix Proc.
1978, Society for Industrial and Applied Mathematics, 256–282, 1979.

[25] H.T. Kung, Why systolic architectures, Computer 15 (1), 37–46, 1982.

[26] C. Lanczos, Solution of systems of linear equations by minimised iterations.
J. Res. Nat. Bur. Stand. 49, 33–53, 1952.

73

[27] B. N. Parlett, D. R. Taylor, Z. A. Liu, A look-ahead Lanczos algorithm for
unsymmetric matrices, Math. Comp., 44, 105–124, 1985.

[28] C. C. Paige, M. A. Saunders, Solution of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12, 617–629, 1975.

[29] C. C. Paige, M. A. Saunders, LSQR: An algorithm for sparse linear equa-
tions and sparse least squares, ACM Trans. Math. Soft. 8, 43–71, 1982.

[30] N. Petkov, Systolic Parallel Processing, Elsevier Science Publ., Amsterdam,
1993.

[31] H.J.J. te Riele, Factoriseren en Primaliteitstesten, een inleiding, Report
NM-N8804, CWI Amsterdam, October 1988 (in Dutch).

[32] U. Schendel, Introduction to Numerical Methods for Parallel Computers
(translated from German). Ellis Horwood Ltd., Chichester, 1984.

[33] Y. Saad, M. H. Schultz, GMRES: a generalised minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7,
856–869, 1986.

[34] G. L. G. Sleijpen, D. R. Fokkema, Bi-CGSTAB(`) for linear equations
involving unsymmetric matrices with complex spectrum, Technical Report
772, Department of Mathematics, Utrecht University, 1993.

[35] B.P. Sommeijer, Parallelism in the numerical integration of initial value
problems , Thesis, Univ. of Amsterdam, 1992.

[36] B.P. Sommeijer, Parallel-iterated Runge-Kutta methods for stiff ordinary
differential equations, J. Comput. Appl. Math. 45, 151–168, 1993.

[37] P. Sonneveld, CGS: a fast lanczos-type solver for nonsymmetric linear sys-
tems, SIAM J. Sci. Statist. Comput. 10, 36–52, 1989.

[38] H.S. Stone, Problems of parallel computation, In: J.F. Traub, editor, “Com-
plexity of Sequential and Parallel Numerical Algorithms”, 1–16, Academic
Press, 1973.

[39] A. van der Sluis, H. A. van der Vorst, Numerical solution of large sparse
linear algebraic systems arising from tomographic problems, in: G. Nolet,
editor, Seismic Tomography, chapter 3, 49–83, Reidel Pub. Comp., Dor-
drecht, 1987.

[40] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci.
Statist. Comput. 13, 631–644, 1992.

74

[41] H.A. van der Vorst, Parallel rekenen en supercomputers. Academic Service,
Schoonhoven, The Netherlands, 1988 (in Dutch).

[42] H.A. van der Vorst, K. Dekker, Vectorisation of linear recurrence relations,
Siam J. Sci. Stat. Comput. 10, 27–35, 1989.

[43] H.H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math.
Software 7, 170–183, 1981.

