Optimization of the MPQS-factoring algorithm
on the Cyber 205 and the NEC SX-2

Walter Lioen, Herman te Riele, Dik Winter
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

This paper describes the optimization of a program for the factorization of large integers on two large vector
processors: a CDC Cyber 205 and a NEC SX-2. The factoring method used is the so-called multiple polynomial
version of the quadratic sieve algorithm.

Several large integers in the 48-92 decimal digits range have actually been factorized with these two programs.
The largest number, the 92-digit composite (6'*' —1)/(5-263-3931-6551), was factorized in about 95 CPU-
hours on the NEC SX-2. This result means a new absolute record for general purpose factoring methods.

1980 Mathematics Subject Classification (1985) revision: 11Y05, 11A51, 65F05, 65V05, 65W05.
Keywords and Phrases: quadratic sieve factorization, vector computer, vectorization.

1. INTRODUCTION

Factoring large numbers has long been considered a nice, but useless, activity in number theory.
However, the discovery, about ten years ago, by Rivest et al [7], that the difficulty of breaking certain
cryptographic codes depends on the difficulty of factoring large integers, has considerably stimulated
the interest in this problem. In particular, in order to be able to use safe cryptosystems based on
factoring, it is of continuous interest to know what can be achieved in factoring with the best method
and with the fastest available (super)computer. At present, at least six groups of researchers in the
USA, Australia, Japan and The Netherlands are heavily involved in factoring large numbers, some
of them aided by very powerful vector an parallel computers. Although many factoring methods are
known [6], only two of them are still feasible for numbers of, say, more than 65 decimal digits, viz.,
the Elliptic Curve Method (ECM, [2]) and the Multiple Polynomial Quadratic Sieve (MPQS, [4]).
ECM and MPQS are complementary in the sense that if N is the number to be factorized, then the
computing time of ECM depends on the size of the second largest prime divisor of IV, whereas the
computing time of MPQS depends on the size of N itself. Usually, ECM is tried first and when it has
failed after some time, then MPQS is invoked.

In this paper we describe how we have optimized the MPQS-algorithm for the Cyber 205 and the
NEC SX-2 vector computers. We assume the reader to be familiar with the basic characteristics of the
two machines. We shall restrict our attention to the two most time-critical loops: the so-called sieve
loop and the selection loop. These loops consume more than 75% of the total CPU-time. Moreover,
we devote a few words to a memory-critical part of the algorithm: the Gaussian elimination step.

We have applied our programs to various large composite numbers in the 48-92 decimal digits
range. The results obtained are described in [5]. The largest number we have split into prime factors
was a 92-digit composite from the so-called Cunningham project [1]. It took the NEC SX-2 about 95
AP-hours to factorize this number, and at the moment of writing this is the largest difficult composite
number ever factorized by means of a general purpose factoring method.

2. The MPQS-factorization method 2

2. THE MPQS-FACTORIZATION METHOD

It is beyond the scope of this paper to fully describe the Multiple Polynomial Quadratic Sieve algo-
rithm. We describe it here in a simplified form in order to be able to explain the place of the two
time-critical loops and the Gaussian elimination step. A complete description of the algorithm may
be found in [4] and practical experiences with MPQS are described in [8] and [5].

Suppose that we want to factorize the (large) integer N, which is known to be composite and whose
smallest prime divisor is known to be reasonably large (e.g. by Pollard’s p— 1 method [6], or by ECM).
The idea of the Quadratic Sieve Factoring algorithm is to find two integers X and Y satisfying the
congruence X2 =Y? (mod N), from congruences of the form U? = V2W,; (mod N), where the latter
congruences are generated by means of a quadratic polynomial W (z), and where the numbers W; are
easy to factor, or at least much easier than N. If sufficiently many such triples (U;, V;, W;) are known,
where the W;’s are completely factorized, then indeed such an (X, Y)-congruence can be found. Next
we compute d := ged(X — Y, N) by Euclid’s algorithm and if 1 < d < N then d is a proper divisor
of N. If not sufficiently many congruences could be generated with one quadratic polynomial, then
another is constructed, and so on.

The simplified version of the Quadratic Sieve (with one polynomial) now looks as follows. Let
U(x) := 2 +m, where m = |[N'/2], V := 1 and W(z) := (U(x))?> — N, for x = 0,41,42,.... Then
we have

(U(z))> =W(x) (mod N)
and
W(z) ~2eNY2 < N if z< N2

Hence W (z) is easier to factorize than N. Moreover, W (x) has the nice property that if p | W(xo)
for some xo then also p | W(xo + kp), for all k € Z. Such an z¢ may be found for given p as follows:

W(z)=0 (modp) implies that (z4+m)*>=N (mod p);

this equation has two solutions if N is a so-called quadratic residue of p (shortly denoted by the

Legendre symbol notation (%) = 1). These solutions can be computed quite easily (cf. [6, pp. 287—

288]).

We now describe the Quadratic Sieve Algorithm:

1. Choose a factor base F'B := {p < B | p prime and (%) = 1} for some suitable B (these are the
primes allowed in the W’s that we want to factorize completely); let F' := |FB|.

2. Vp € FB solve W(z) =0 (mod p) — two solutions 7§ and 5.
3. Initialize a sieving array SI(—M : M — 1) to 0, where M is suitably chosen.

4. (Sieving) Vp € FB,Vj € [-M, M — 1] such that j = ¥ (mod p) or j = r5 (mod p): SI(j) :=
SI(j)+logp.

5. (Selection) Select those x € [—M, M —1] for which |SI(x)| ~ log |W (z)| and store these numbers
into x1,x2,.... Note that log |W(z)| is very slowly varying and for those x which are selected
in this step, there is a very good chance that W (zx) is only composed of primes belonging to

the factor base! Associate with x; and W (z;) the vector of exponents of W(z) (mod 2) : @7 =
(o, 01, ... ,ap) where

F
W) = (~1)% [2,
j=1

and p1,...,pr are the primes in F'B.

3. Optimization 3

6. (Gaussian elimination) Collect at least F'+ 2 completely factorized W’s (assume this is possible
for the choice of B and M made) and find linear combinations of vectors & which, added (mod 2),
yield 0. This is carried out by Gaussian elimination (mod 2).

7. Multiply those W (x)-values whose linear combination of exponent-vectors yield the 0-vector.
This implies that we have found a congruence of the form X2 = Y2 (mod N); compute these
X and Y, and ged(X — Y, N) which should be a factor of N. (Usually, in step 6 more than
one suitable linear combination of exponent-vectors are found and this may help if the first gcd
found is 1 or N.)

The most time-consuming part in this algorithm is step 4 because in order to factor a very large
number N, the parameters B and M have to be chosen very large (and a large M implies a long
sieving array and a large B implies many primes in the sieving step 4). Step 5 may also consume a
non-trivial portion of the total CPU-time. Finally, the Gaussian elimination step 6 deserves attention,
not because of the time, but because of the memory it needs. In the next Section we describe how we
have optimized steps 4, 5 and 6 on the Cyber 205 and on the NEC SX-2.

3. OPTIMIZATION
3.1 The sieve loop
The loop in the sieving step 4 may be given in Fortran as

DO30I=1, F
P = FB(I)
LP = ALOG(P)
D020 J =1, 2
RJ = SOL(I, J)
KF = FIRST(M, P, RJ)
KL = LAST (M, P, RJ)
DO 10 K = KF, KL, P
SI(K) = SI(K) + LP
10 CONTINUE
20 CONTINUE
30 CONTINUE

Here, FB(I) is the I-th prime in the factor base, SOL(I,1) and SOL(I,2) are the two precomputed
solutions of the equation W(z) =0 (mod P), and FIRST and LAST are functions which determine the
first and the last places in array SI(-M:M-1) to which logP has to be added.

Of course, only the 10-loop is vectorizable. On the NEC SX-2 this was done automatically by the
compiler, but on the Cyber 205 we had to invoke periodic gather and scatter calls to obtain vector
speed. This piece of code looks as follows (LSI is the length of the sieving array SI, i.e., 2%M):

LEN = (KL - KF)/P + 1

HELP (1;LEN) Q8VGATHP (SI(KF;LSI),P,LEN;HELP(1;LEN))
HELP(1;LEN) = HELP(1;LEN)+LP

SI(KF;LSI) Q8VSCATP (HELP (1;LEN) ,P,LEN; SI(KF;LSI))

The length (LEN) of the 10-loop is about 2*M/P and this may vary, for the values of B and M involved,
roughly between 5 and 170,000 as P runs through the primes in the factor base. Therefore, on the
NEC SX-2, this loop is processed much more efficiently than on the Cyber 205, since the NEC SX-2
attains vector speed for much smaller vectors than the Cyber 205. For the complete 30-loop the
NEC SX-2 reached an average speed of about 90 million LP-additions per second, against 13 million
reached by the Cyber 205.

3. Optimization 4

3.2 The selection loop
The loop in the selection step 5 may be described in Fortran as follows (THRES represents the value of
log |W (z)|, approximately constant for x € [—-M, M — 1]):

COUNT = 0O
DO 10 I = -M, M-1
IF (SI(I) .LT. THRES) GOTO 10
COUNT = COUNT + 1
X(COUNT) = I
10 CONTINUE

Neither the Cyber 205 nor the NEC SX-2 compiler are able to vectorize this loop automatically. On
the Cyber 205 we could use (non standard Fortran) bit vectors and obtain reasonable vector speed
with the following code:

BITV(-M; LSI) = SI(-M; LSI) .GE. THRES
COUNT = Q8SCNT(BITV(-M; LSI))
X(1;COUNT) = Q8VCMPRS(SI(-M;LSI),BITV(-M;LSI);X(1;COUNT))

The function Q8SCNT counts the number of 1’s in a bit vector. We have not measured precisely the
performance of this piece of code (on the Cyber 205) because its CPU-time was dominated by the
time needed to perform the sieve step.

On the NEC SX-2 we could obtain vector speed (because the number of times that SI(I) > THRES
was always extremely small compared with the length of the sieving array SI) with the following piece
of code:

COUNT = 0O
IPOINT = -M
*VDIR LOOPCNT=256
10 DO 20 I = IPOINT, IPOINT+255
IF (SI(I) .GE. THRES) GOTO 30
20 CONTINUE
IPOINT = IPOINT + 256
IF (IPOINT+255 .LE. M-1) THEN
GOTO 10
ELSE
GOTO 40
END IF
30 COUNT = COUNT + 1
X(COUNT) = I
IPOINT =TI + 1
IF (IPOINT+255 .LE. M-1) GOTO 10
40 CONTINUE
*VDIR LOOPCNT=256
DO 50 I = IPOINT, M-1
IF (SI(I) .GE. THRES) THEN
COUNT = COUNT + 1
X(COUNT) = I
END IF
50 CONTINUE

The time to run this piece of code on the SX-2 was about equal to the total sieving time in step 4.
The speed was about 90 million comparison per second.

4. Conclusions 5

3.8 The Gaussian elimination

The algorithm we used to perform Gaussian elimination (mod 2) on the matrix of exponent vectors of
W (x;) is described in [3]. The binary elements of this matrix could be packed in words of 64 bits on
the Cyber 205, and in words of 32 bits on the NEC SX-2; the elimination process could be carried out
very efficiently by means of the XOR-operation. On both machines, the time to carry out the Gaussian
elimination was completely negligible compared to the time needed for the sieving and the selection
steps. However, for our program, the available central memory was crucial for the maximum size of
the Gaussian elimination matrix and this, in turn, dictated the maximal size of the number we could
factorize.

For example, the largest number we have factorized on the Cyber 205 has 82 decimal digits, and the
size of the factor base was about 7,400. The Gaussian elimination on the corresponding 7,400 x 7,400
matrix consumed about 4 minutes CPU-time (the total CPU-time needed was about 70 hours!) and
this matrix almost completely occupied the available (at that time) central memory of about 1 Mwords
of 64 bits. However, on the NEC SX-2 which has a central memory of 32 Mwords of 32 bits, we could
process a much larger matrix, and, therefore, also factorize larger numbers. This larger memory also
allowed us to work with a larger sieving array and this reduced the factoring time to some extent,
compared to that for the same number on the Cyber 205. Our NEC SX-2 champion has 92 decimal
digits, the size of the factor base was about 24,300 and the size of the Gaussian elimination matrix
24,300 24,300. The Gaussian elimination time was about 4 minutes (and the total amount of factoring
time about 95 AP-hours!).

4. CONCLUSIONS

We have described how we optimized the time-critical loops in our (multiple polynomial) quadratic
sieve factoring program. On the NEC SX-2 these loops could be vectorized using standard Fortran 77,
combined with vector directives. On the Cyber 205 we had to invoke FORTRAN 200 vector syntax in
order to vectorize these loops. Our NEC SX-2 program runs about 5-10 times as fast as our Cyber 205
program. Moreover, due to the much larger central memory on the NEC SX-2 we could also factorize
larger numbers with our NEC SX-2 program than with our Cyber 205 program.

REFERENCES

1. J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman, and S.S. Wagstaff, Jr. Factorizations of
b"+1,6=2,3,5,6,7,10,11,12 up to high powers, volume 22 of Contemporary Mathematics Series.
American Mathematical Society, Providence, second edition, 1988.

2. H.W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics (Second Series),
126(3):649-673, November 1987.

3. D. Parkinson and M. Wunderlich. A compact algorithm for Gaussian elimination over GF(2)
implemented on highly parallel computers. Parallel Computing, 1(1):65-73, August 1984.

4. C. Pomerance, J.W. Smith, and R. Tuler. A pipeline architecture for factoring large integers with
the quadratic sieve algorithm. SIAM Journal on Computing, 17(2):387-403, April 1988.

5. H.J.J. te Riele, W.M. Lioen, and D.T. Winter. Factoring with the quadratic sieve on large vector
computers. Journal of Computational and Applied Mathematics, 27(1&2):267-278, September 1989.

6. H. Riesel. Prime Numbers and Computer Methods for Factorization. Birkhauser, Boston, 1985.

7. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120-126, February 1978.

8. R.D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Computation,
48(177):329-339, January 1987.

