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MGZEB - Routine Document

1. Purpose

MGZEB solves 7-diagonal linear systems, that arise from 7-point discretizations of elliptic PDEs on a rec-
tangle, using a multigrid technique.

2. Specification

SUBROUTINE MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,
+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)

C REAL A(NM*7), U(NM), RHS(NM), DEC(NM*2), US(NM), TOL, RESNO

C INTEGER NXF, NYF, NF, LEVELS, NXC, NYC, NM,
C + START, MAXIT, P, S, Q, IOUT(5), IFAIL

3. Description

MGZEB solves a 7-diagonal linear system, that arises from a 7-point discretization of an elliptic PDE on a
rectangle. The system is written in the form

(1)A × U = RHS,

where A and RHS are the user-supplied matrix and right-hand side respectively. Note, that only the 7 non-
zero diagonals are stored. The approximate solution is found by means of the multigrid correction storage
algorithm

with: smoothing by even-odd y-zebra relaxation, symmetric 7-point prolongation and restriction, Galer-
kin approximation of coarse grid matrices, also on the coarsest grid relaxation is used as the solu-
tion process.

However, the user remains unaware of the underlying multigrid method.

The user supplies an absolute residual tolerance in the form of a bound of its l 2 -norm. The user may also
supply an initial approximation (alternatively, the zero solution is used as initial approximation).

4. References

[1] Hemker, P.W., On the comparison of line-Gauß Seidel and ILU relaxations in multigrid algorithms.
In: Computational and asymptotic methods for boundary and interior layers. (J.J.H. Miller ed.) pp.
269-277, Boole press, 1982.

[2] Hemker, P.W., Wesseling, P. and Zeeuw, P.M. de, A portable vector code for autonomous multigrid
modules. In: PDE software: modules, interfaces and systems. (B. Engquist and T. Smedsaas eds.),
pp. 29-40, Procs. IFIP WG 2.5 working conference, North-Holland, 1984.

[3] Lioen, W.M. and Hemker P.W., Multigrid methods for elliptic PDEs, I. To appear in: Numerical
Aspects of Vector- and Parallel Processors. (H.J.J. te Riele ed.) Procs. 1985 -1986 (CWI, UvA,
THD) colloquium.

[4] Numerical Algorithms Group, NAG FORTRAN library manual - mark 11, 1984.

[5] Wesseling, P., A robust and efficient multigrid method. In: Multigrid methods (W. Hackbusch and
U. Trottenberg eds.), pp. 614-630, Procs. Koln-porz, 1981. Springer LNM 960, Springer-verlag,
1982.
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5. Parameters

NXF - INTEGER.
NYF - INTEGER.

On entry, NXF and NYF must specify the number of vertical and horizontal grid-lines respectively, on
the finest grid.
Unchanged on exit.

NF - INTEGER.
On entry, NF must specify the number of grid-points plus the number of horizontal grid-lines on the
finest grid.
Unchanged on exit.

LEVELS - INTEGER.
On entry, LEVELS must specify the number of levels in the multigrid method.
Unchanged on exit.

NXC - INTEGER.
NYC - INTEGER.

On entry, NXC and NYC must specify the number of vertical and horizontal grid-lines respectively, on
the coarsest grid.
Unchanged on exit.

NM - INTEGER.
On entry, NM must specify the number of grid-points plus the number of horizontal grid-lines on all
grids together.
Unchanged on exit.

Note that the following relations should hold:

NXF, NYF, NXC, NYC ≥ 3

NF = (NXF + 1) × NYF

1 ≤ LEVELS ≤ min {log2(NXF − 1),log2(NYF − 1),12}

(NXC − 1) = (NXF − 1) × 21 − LEVELS

(NYC − 1) = (NYF − 1) × 21 − LEVELS

NM ≥ 3
4hh (NXF − 1) (NYF − 1) − 3

1hh (NXC − 1) (NYC − 1) +

2 [(NXF − 1) + 2 (NYF − 1)] − [(NXC − 1) + 2 (NYC − 1)] +

2 × LEVELS

For practical purposes: NM ≥ 3
4hh (NXF + 3) (NYF + 1)

The program checks the consistency of these data

Examples:
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A - REAL array of DIMENSION at least (NM*7)
Before entry, the first NXF*NYF*7 elements of A must contain the matrix corresponding to the finest
grid. If the routine has to be re-entered with ISTART = 2, the first NM*7 elements of A should remain
unchanged, otherwise wrong results will be produced!

The easiest way for the user to fill the matrix A is writing a subroutine where the actual argument A is
handled as an adjustable array with dimensions (NXF, NYF, 7).

The 7-point difference molecule at the point with subscripts (I, J) is positioned in the x,y -plane as fol-
lows:

J−1

J

J+1

I+1II−1

A(I,J,7)A(I,J,6)

A(I,J,5)A(I,J,4)A(I,J,3)

A(I,J,2)A(I,J,1)

y

x0

Important: the user has to provide the matrix A only on the finest grid. The coarse grid matrices are com-
puted inside by the routine by means of Galerkin approximation.
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Important: the user has to take care that parts of the molecules outside the domain are initialized to zero
otherwise wrong results are produced.

On exit, the first NM*7 elements of A contain the original information of the user-provided matrix A plus
its coarse grid approximations. However the information has in general become worthless to the user
(except for the re-entry case), because on exit the information still is stored according to the data-
structure internally used by the routine.
Hence, the contents of A are altered on exit.

U - REAL array of DIMENSION at least (NM)
Only if the routine is entered with ISTART = 1 or re-entered with ISTART = 2, the first NXF*NYF ele-
ments of U must contain an initial estimate for the iterative process. If ISTART = 0 no initialization of U

is necessary (a zero initial estimate is assumed).

The easiest way for the user to fill the initial estimate is writing a subroutine where the actual argument U

is handled as an adjustable array with dimensions (NXF, NYF).

On successful exit, the first NXF*NYF elements of U contain the (approximate) numerical solution.

RHS - REAL array of DIMENSION at least (NM)
Before entry, the first NXF*NYF elements of RHS must contain the right-hand side of the equation.
If the routine has to be re-entered with ISTART = 2, the first (NXF+1)*NYF elements of RHS have to be
kept unchanged, otherwise wrong results will be produced!

The easiest way for the user to fill the right-hand side is writing a subroutine where the actual argument
RHS is handled as an adjustable array with dimensions (NXF, NYF).

Important: the user has to provide the right-hand side of the discretized equation only on the finest grid.

On exit, the first (NXF+1)*NYF elements of RHS contain the original information of the user-provided RHS.
However, the information has in general become worthless to the user (except for the re-entry case),
because on exit the information still is stored according to the data-structure internally used by the rou-
tine.
Hence, the contents of RHS are altered on exit.

DEC - REAL array of DIMENSION at least (NM*2).
Used as workspace.
Only if the routine has to be re-entered with ISTART = 2, the first NM*2 elements of DEC have to be
kept unchanged, otherwise wrong results will be produced!
On exit, the first NM*2 elements of DEC contain the line LU-decompositions of A on all levels, used for
the zebra-relaxation. However, the information is in general worthless to the user (except for the re-
entry case), because on exit the information still is stored according to the data-structure internally
used by the routine.

US - REAL array of DIMENSION at least (NM).
Used as workspace.

ISTART - INTEGER.
On entry, ISTART must be set to 0, 1 or 2.

ISTART = 0 means that the initial estimate is zero, initialization of U is not necessary;
= 1 means that the user provides an initial estimate of the solution in U;
= 2 means that the routine is re-entered after a former call of the routine

(e.g. with another initial estimate or to refine the numerical solution found).
In this case:

NXF, NYF, NF, LEVELS, NXC, NYC, NM,
the first NM*7 elements of A,
the first NM*2 elements of DEC and
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the first (NXF+1)*NYF elements of RHS

should be kept unchanged, otherwise wrong results will be produced!

Unchanged on exit.

MAXIT - REAL.
TOL - REAL.

On entry, MAXIT must specify the maximum number of allowed multigrid iterations and TOL must
specify the tolerance desired by the user, where TOL is a bound of the l 2 -norm of the residual.
If during the multigrid process either MAXIT iterations have been performed or the tolerance has been
reached, multigrid cycling is stopped.
Unchanged on exit.

P - INTEGER.
Q - INTEGER.
S - INTEGER.

These parameters allow the user to influence the multigrid strategy. Most probably a good choice is P

= 0, Q = S = 1. On entry, P specifies the number of relaxations before the coarse grid correction; S

specifies the number of multigrid iterations in the coarse grid correction; and Q specifies the number of
relaxations after the coarse grid correction. S defines the cycling structure: V-cycles are obtained by S

= 1 and W-cycles by S = 2. By setting P = 0 and Q = S = 1 (the recommended values that can also be
found in [1] and [5]) we obtain the so-called sawtooth multigrid cycle, which is also used by MGD1
and MGD5.
The values of P, Q and S are unchanged on exit.

IOUT - INTEGER array of DIMENSION at least (5)
IOUT governs the amount of information about the solution process delivered to the user. Smaller
IOUT-values mean less output. The user may select the unit-number on which this output is to appear
by a call of X04ABF. Before entry, the first 5 elements of IOUT must contain one of the following
values:

IOUT(1) ≥ 1 confirmation of input data
≤ 0 none

IOUT(2) ≥ 2 matrices on all levels and right hand side on highest level
= 1 matrix and right-hand side on highest level
≤ 0 none

IOUT(3) ≥ 2 matrix-decompositions on all levels
= 1 matrix-decomposition on highest level
≤ 0 none

IOUT(4) ≥ 3 norms of residuals, reduction factors, final solution, final residual
= 2 norms of residuals, reduction factors, final solution
= 1 norms of residuals, reduction factors (i.e. monitoring the convergence-behaviour the

same effect is obtained by setting IFAIL ≥ 100 on entry)
≤ 0 none

IOUT(5) ≥ 1 the time spent in various subroutines
≤ 0 none

The contents of IOUT are unchanged on exit.

RESNO - REAL.
On exit, RESNO contains the l 2 -norm of the residual.

IFAIL - INTEGER.
For this routine, the normal use of IFAIL is extended to control the printing of error and warning
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messages as well as specifying hard or soft failure (see [4], chapter P01). On entry IFAIL must be set
to a value with the decimal expansion cba, where each of the decimal digits c, b and a must have the
value 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see section 6);
c = 0 suppresses warning messages, otherwise warning messages will be printed (see section 6).

For users not familiar with this parameter the recommended value is 110 (i.e. hard failure with all mes-
sages printed).
Unless the routine detects an error (see section 6), IFAIL contains 0 on exit.

6. Error indicators and warnings

Errors detected by the routine:-

For some errors the routine outputs an explanatory message on the current error message unit (see routine
X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL = 1
one or more of the input parameters have been incorrectly set.

IFAIL = 2
convergence, but MAXIT iterations performed without reaching TOL. This could be due to a poor
convergence-behaviour for this specific problem or to reaching roundoff level. In any case, the user is
advised to monitor the convergence-behaviour by choosing IFAIL or IOUT(4) appropriately.

IFAIL = 3
the routine fails to converge. This routine is probably not suitable for this specific problem.

7. Auxiliary routines

This routine calls the following NUMVEC library routines:
ADPROL, ARSPLT, CHANGE, CYCLES, DECOMP, EO2NOR, EORESI, EORSTR, EOZBRA, GALERK, INZBLK,
MATRHS, OUTDEC, OUTEOR, OUTMAT, OUTVEC, P01AAF, PROLON, RAP, RESIDU, RESTRI, TIMING, VCCOMB,
VCSPLT, VL2NOR, X04AAF, X04ABF and YLDEC.

8. Timing

In scalar-mode the timing (for S = 1) is proportional to NM and approximately proportional to
(NXF+3) × (NYF+1). In vector-mode the timing becomes better with increasing NM because of increasing
vector-lengths.
If the only concern would be an efficient vector-performance (mflop-rates) then it is advised to take the
longest side of the rectangular grid along the x-axis.
If on the other hand one is also interested in a good numerical-performance (convergence-rates) then one
has to take full account of the direction-sensitivity of the zebra-relaxation used. (viz. generally y-zebra
relaxation is more efficient if a stronger connection exists between points in the y-direction than in the x-
direction).
It is obvious, that both requirements can be in conflict with each other and that in some cases the latter
requirement is more important in order to obtain a much better overall-performance (efficiency)!

9. Storage

Internally declared arrays contain 9 REAL and 74 INTEGER elements.
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10. Accuracy

If the process converges, and MAXIT is large enough, the l 2 -norm of the residual becomes less than TOL.

11. Further comments

Labelled common blocks CPU and POI are used by the routine and must therefore be avoided by users.
The user is strongly recommended to set IFAIL to obtain self-explanatory error-messages, and also moni-
toring information about the convergence-behaviour. The user may select the unit numbers on which this
output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) - see
section 13 for an example. Otherwise the default unit numbers will be used.

11.1. Vectorization information

This program is entirely written in ANSI FORTRAN 77 and auto-vectorizes both on the CYBER 205
and the CRAY. On the CYBER 205 the compiler-options OPTimize and UNSafe will suffice.

In order to obtain a good (vector-)performance:

1. The data-structure is adapted internally to avoid the CYBER 205 stride problem during the most
costly part of a multigrid iteration step: the (zebra-)relaxation. This is done by re-storing the prob-
lem during the preparational phase on entry; performing the multigrid cycling phase; and re-
storing the numerical solution found according to the normal ordering of array-elements on exit.

2. The (line-wise) recurrencies which occur during the computation of the decompositions and the
solution of the tri-diagonal systems, that arise from the zebra-relaxation, are solved simultane-
ously.

3. The (vector-) division during the zebra-relaxation is avoided by storage of the reciprocal value
during the decomposition.

4. Wherever possible, the fact that the residual is zero on half the number of lines after a zebra-
relaxation is performed, is exploited (this is possible during the computation of the residual itself,
the norm of this special residual and the restriction of this special residual).

5. The number of page-faults is minimized.

6. Wherever possible nested DO-loops are collapsed, (which is not always trivial, think of the
matrix-vector multiplications during the residual computation, or even better during the right-hand
side computation of the tri-diagonal systems arising from the zebra-relaxation).

In order to conform with ANSI FORTRAN 77:

7. Nested DO-loop collapsing (point 6.) is done by explicit making use of over-indexing.

In order to survive large problems on the CYBER 205:

8. The restriction on the iterative loop count (65535) is taken care of.

In order to fool the (CYBER 205) FORTRAN 200 compiler:

9. Possible recurrencies are taken care of by implicit equivalencing: the same actual argument is
passed to two different dummy arguments.
This possible recurrency occurs when the first index exceeds the maximum rowindex in the actual
declaration, which is allowed within FORTRAN and therefore suspected by the CYBER 205
FORTRAN 200 compiler.
(The CRAY 1 FORTRAN compiler assumes implicitly that the programmer avoids such a situa-
tion. The CRAY 1 FORTRAN compiler is also provided with compiler-directives to force genera-
tion of vector-instructions or to turn the automatic vectorization off!)
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Illustrations of points 5, 6, 7 and 8 are shown in the subroutine "MATRHS" which is part of the exam-
ple program (see section 13.1).

12. Keywords

Elliptic PDEs,
Galerkin approximation,
Multigrid methods,
Sparse linear systems,
Zebra relaxation.

13. Example

We solve the Poisson equation on the unit square with Dirichlet boundary conditions and the right hand
side constructed according to the exact solution x (1 − x) + y (1 − y). In this example the boundary con-
ditions are eliminated.

First we try 10 iterations with a zero initial approximation and if no divergence is found (using the soft
fail option) we try to refine the solution until the residual norm becomes lesser than 10−10 using the
former approximation.

Note the calls to X04AAF and X04ABF prior to the call of MGZEB.

13.1. Program text

PROGRAM EXAMPL

INTEGER P, S, Q, IOUT(5)
C

C ***************************************************************************
C

C Actual user provided DIMENSION statements. The arrays are declared
C in a labelled COMMON block in order to allow large-page mapping
C on the CYBER 205.
C

INTEGER NM

PARAMETER (NM=88926)
REAL A, RHS, DEC, U, US

COMMON /BIG/ A(NM*7), RHS(NM), DEC(NM*2), U(NM), US(NM)
C

C User DATA statements
C

DATA NXC, NYC, NXF, NYF, NF, LEVELS /3, 3, 257, 257, 66306, 8/
DATA P, S, Q /0, 1, 1/
DATA IOUT /1, 0, 0, 1, 1/

C

C ***************************************************************************
C

DATA NOUT /6/
C

OPEN(UNIT=NOUT, FILE= ´ OUTPUT ´ )
CALL X04AAF(1, NOUT)
CALL X04ABF(1, NOUT)

C

WRITE(NOUT, 99991)
99991 FORMAT( ´ 1MGZEB EXAMPLE PROGRAM RESULTS ´ ///)

Page 8



***-Elliptic PDEs MGZEB

C

C Problem set up
C

CALL MATRHS(A, RHS, NXF, NYF, NOUT)
C

CALL TIMING(CPB)
C

C Approximate the solution of the linear system:
C perform 10 MGZEB iterations, using the soft fail option.
C

ISTART = 0
MAXIT = 10
TOL = 0.0E0
IFAIL = 111

C

CALL MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,
+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)

C

C If no divergence was found, we try to refine the solution until
C the residual norm < 1.0E−10.
C

IF (IFAIL.EQ.2) THEN

ISTART = 2
MAXIT = 50
TOL = 1.0E−10
IFAIL = 110

C

CALL MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,
+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)

ENDIF

CALL TIMING(CPE)
WRITE(NOUT, 99992) CPE−CPB

99992 FORMAT(// ´ TOTAL CPSECS USED BY MGZEB: ´ , F12.6)
C

C Test the IFAIL-parameter before printing the final solution.
C

IF (IFAIL.EQ.0) CALL PRTSOL(U, NXF, NYF, NOUT)
C

STOP

END

SUBROUTINE MATRHS(A, RHS, NXF, NYF, NOUT)
REAL A(NXF, NYF, 7), RHS(NXF, NYF)
INTEGER NXF, NYF, NOUT

C

C MATRHS is a subroutine which fills the matrix and the right-hand
C side. It is part of the example program.
C

C The example is the Poisson equation on the unit square with
C Dirichlet boundary conditions and the exact solution is:
C X * (XSIZE − X) + Y * (YSIZE − Y).
C In this example the boundary conditions are eliminated.
C
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REAL XSIZE, YSIZE, XH, YH, X, Y, B

REAL ZERO, ONE, TWO, FOUR

DATA ZERO, ONE, TWO, FOUR /0.0E0, 1.0E0, 2.0E0, 4.0E0/
XSIZE=ONE

YSIZE=ONE

XH=XSIZE/FLOAT(NXF+1)
YH=YSIZE/FLOAT(NYF+1)

C /(...+1) Because of elimination of boundary conditions
WRITE(NOUT, 99991) XSIZE, YSIZE, XH, YH

99991 FORMAT( ´ POISSON PROBLEM: ´ // ´ XSIZE = ´ , 1PE13.6/ ´ YSIZE = ´ ,
+ E13.6/ ´ XH, YH = ´ , 2E13.6)

XYH4=FOUR*XH*YH

XY=XH/YH

YX=YH/XH

C

C Initial filling of the matrix and the right-hand side neglecting
C the boundaries.
C

C DO 10 J=1,NYF

C DO 10 I=1,NXF

C A(I,J,1)=−XY

C A(I,J,2)=ZERO

C A(I,J,3)=−YX

C A(I,J,4)=TWO*(YX+XY)
C A(I,J,5)=−YX

C A(I,J,6)=ZERO

C A(I,J,7)=−XY

C RHS(I,J)=XYH4
C 10 CONTINUE

C

C In order to obtain maximum vector-performance we reformulate
C loop 10 keeping the following points in mind:
C

C . the nested DO-loop 10 is collapsible (by making use of
C explicit over-indexing)
C . we have to satisfy the CYBER 205 restriction on the
C iterative loop count
C . by not taking one single outer DO-loop: DO 10 KK=1,NF,65535
C for all inner DO-loops 11 up to and including 18 we possibly
C avoid a few page-faults
C

NF=NXF*NYF

C

DO 11 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 11 K=KK,KKE

A(K,1,1)=−XY

11 CONTINUE

DO 12 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 12 K=KK,KKE

A(K,1,2)=ZERO

12 CONTINUE
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DO 13 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 13 K=KK,KKE

A(K,1,3)=−YX

13 CONTINUE

DO 14 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 14 K=KK,KKE

A(K,1,4)=TWO*(YX+XY)
14 CONTINUE

DO 15 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 15 K=KK,KKE

A(K,1,5)=−YX

15 CONTINUE

DO 16 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 16 K=KK,KKE

A(K,1,6)=ZERO

16 CONTINUE

DO 17 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 17 K=KK,KKE

A(K,1,7)=−XY

17 CONTINUE

DO 18 KK=1,NF,65535
KKE=(KK−1)+MIN0(65535,NF−(KK−1))
DO 18 K=KK,KKE

RHS(K,1)=XYH4
18 CONTINUE

C

C Correction for the Dirichlet boundary conditions corresponding
C to the exact solution, X * (XSIZE − X) + Y * (YSIZE − Y)
C

C Note, that after this correction-process all parts of the
C difference-molecules outside the domain are initialized to zero!
C

C

C Lower boundary
C

X=ZERO

DO 20 I=1,NXF

X=X+XH

B=X*(XSIZE−X)
RHS(I,1)=RHS(I,1)−A(I,1,1)*B

A(I,1,1)=ZERO

20 CONTINUE

C

C Left and right-hand boundary
C

Y=ZERO

DO 30 J=1,NYF

Y=Y+YH
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B=Y*(YSIZE−Y)
RHS(1,J)=RHS(1,J)−A(1,J,3)*B

A(1,J,3)=ZERO

RHS(NXF,J)=RHS(NXF,J)−A(NXF,J,5)*B

A(NXF,J,5)=ZERO

30 CONTINUE

C

C Upper boundary
C

X=ZERO

DO 40 I=1,NXF

X=X+XH

B=X*(XSIZE−X)
RHS(I,NYF)=RHS(I,NYF)−A(I,NYF,7)*B

A(I,NYF,7)=ZERO

40 CONTINUE

RETURN

END

SUBROUTINE PRTSOL(V, NX, NY, NOUT)
REAL V(NX, NY)
INTEGER NX, NY

C

C This routine prints the solution V and is only part
C of the example program.
C

WRITE(NOUT,1)
1 FORMAT( ´ 1THE NUMERICAL SOLUTION FOUND: ´ /)

IF (NX.LE.33 .AND. NY.LE.33) THEN

DO 10 J=NY,1,−1
WRITE(NOUT,2) J,(V(I,J),I=1,NX)

2 FORMAT(/ ´ Y−INDEX= ´ , I3, 1X, 1P10E12.3/(13X,1P10E12.3))
10 CONTINUE

ELSE

WRITE(NOUT,3)
3 FORMAT( ´ IS TOO LARGE TO FIT ON A FEW PAGES. ´ )

ENDIF

RETURN

END

13.2. Program data

None.
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13.3. Program results

MGZEB EXAMPLE PROGRAM RESULTS

POISSON PROBLEM:

XSIZE = 1.000000E+00
YSIZE = 1.000000E+00
XH, YH = 3.875969E-03 3.875969E-03

MULTIGRID PROGRAM MGZEB, VERSION 24 MAY 1985

LEVELS NXC NYC NXF NYF NF NM
8 3 3 257 257 66306 88926

MAXIT TOL P S Q
10 0.000000E+00 0 1 1

ISTART IOUT IFAIL
0 1 0 0 1 1 111

L2-NORM OF INITIAL RESIDUAL= 5.87E+00

ITERATION NUMBER = 1
L2-NORM OF RESIDUAL = 5.25E-03
REDUCTION FACTOR = 8.95E-04
AVERAGE REDUCTION FACTOR = 8.95E-04

ITERATION NUMBER = 2
L2-NORM OF RESIDUAL = 1.61E-03
REDUCTION FACTOR = 3.06E-01
AVERAGE REDUCTION FACTOR = 1.65E-02

ITERATION NUMBER = 3
L2-NORM OF RESIDUAL = 5.76E-04
REDUCTION FACTOR = 3.58E-01
AVERAGE REDUCTION FACTOR = 4.61E-02

ITERATION NUMBER = 4
L2-NORM OF RESIDUAL = 2.14E-04
REDUCTION FACTOR = 3.72E-01
AVERAGE REDUCTION FACTOR = 7.77E-02

ITERATION NUMBER = 5
L2-NORM OF RESIDUAL = 8.07E-05
REDUCTION FACTOR = 3.77E-01
AVERAGE REDUCTION FACTOR = 1.07E-01
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ITERATION NUMBER = 6
L2-NORM OF RESIDUAL = 3.06E-05
REDUCTION FACTOR = 3.79E-01
AVERAGE REDUCTION FACTOR = 1.32E-01

ITERATION NUMBER = 7
L2-NORM OF RESIDUAL = 1.17E-05
REDUCTION FACTOR = 3.81E-01
AVERAGE REDUCTION FACTOR = 1.53E-01

ITERATION NUMBER = 8
L2-NORM OF RESIDUAL = 4.45E-06
REDUCTION FACTOR = 3.81E-01
AVERAGE REDUCTION FACTOR = 1.72E-01

ITERATION NUMBER = 9
L2-NORM OF RESIDUAL = 1.70E-06
REDUCTION FACTOR = 3.82E-01
AVERAGE REDUCTION FACTOR = 1.88E-01

ITERATION NUMBER = 10
L2-NORM OF RESIDUAL = 6.49E-07
REDUCTION FACTOR = 3.82E-01
AVERAGE REDUCTION FACTOR = 2.02E-01

MAXIT ITERATIONS PERFORMED, WITHOUT REACHING TOL

ERROR DETECTED BY NUMVEC LIBRARY ROUTINE MGZEB - IFAIL = 2

TIMINGS:

CHANGE 0.061340

GALERKIN 0.154401

DECOMPOSITION 0.022052

CYCLES (TOTAL) 0.599845

RELAXATION 0.289824

RESIDUAL 0.098288

PROLONGATION 0.101042

RESTRICTION 0.087903

NORM 0.008126

MULTIGRID PROGRAM MGZEB, VERSION 24 MAY 1985
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LEVELS NXC NYC NXF NYF NF NM
8 3 3 257 257 66306 88926

MAXIT TOL P S Q
50 1.000000E-10 0 1 1

ISTART IOUT IFAIL
2 1 0 0 1 1 110

L2-NORM OF INITIAL RESIDUAL= 6.49E-07

ITERATION NUMBER = 1
L2-NORM OF RESIDUAL = 2.48E-07
REDUCTION FACTOR = 3.82E-01
AVERAGE REDUCTION FACTOR = 3.82E-01

ITERATION NUMBER = 2
L2-NORM OF RESIDUAL = 9.50E-08
REDUCTION FACTOR = 3.83E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 3
L2-NORM OF RESIDUAL = 3.64E-08
REDUCTION FACTOR = 3.83E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 4
L2-NORM OF RESIDUAL = 1.39E-08
REDUCTION FACTOR = 3.83E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 5
L2-NORM OF RESIDUAL = 5.34E-09
REDUCTION FACTOR = 3.83E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 6
L2-NORM OF RESIDUAL = 2.05E-09
REDUCTION FACTOR = 3.84E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 7
L2-NORM OF RESIDUAL = 7.88E-10
REDUCTION FACTOR = 3.84E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 8
L2-NORM OF RESIDUAL = 3.03E-10
REDUCTION FACTOR = 3.84E-01
AVERAGE REDUCTION FACTOR = 3.83E-01

ITERATION NUMBER = 9
L2-NORM OF RESIDUAL = 1.17E-10
REDUCTION FACTOR = 3.85E-01

Page 15



MGZEB ***-Elliptic PDEs

AVERAGE REDUCTION FACTOR = 3.84E-01

ITERATION NUMBER = 10
L2-NORM OF RESIDUAL = 4.49E-11
REDUCTION FACTOR = 3.85E-01
AVERAGE REDUCTION FACTOR = 3.84E-01

TIMINGS:

CHANGE 0.007268

GALERKIN 0.000000

DECOMPOSITION 0.000000

CYCLES (TOTAL) 0.619218

RELAXATION 0.290756

RESIDUAL 0.118021

PROLONGATION 0.101041

RESTRICTION 0.087911

NORM 0.008118

TOTAL CPSECS USED BY MGZEB: 1.471958

THE NUMERICAL SOLUTION FOUND:

IS TOO LARGE TO FIT ON A FEW PAGES.
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