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1.

M GZEB - Routine Document

Purpose

MGzEB solves 7-diagonal linear systems, that arise from 7-point discretizations of elliptic PDES on arec-
tangle, using amultigrid technique.

2. Specification

3.

4,

SUBROUTINE MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,

+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)
c REAL  A(NM=*7), U(NM), RHS(NM), DEC(NM=*2), US(NM), TOL, RESNO
c INTEGER NXF, NYF, NF, LEVELS, NXC, NYC, NM,

C + START, MAXIT, P, S, Q, IOUT(5), IFAIL

Description

MGZEB solves a 7-diagonal linear system, that arises from a 7-point discretization of an elliptic PDE on a
rectangle. The system iswritten in the form

A XU=RHS, @

where A and RHS are the user-supplied matrix and right-hand side respectively. Note, that only the 7 non-
zero diagonals are stored. The approximate solution is found by means of the multigrid correction storage
algorithm

with:  smoothing by even-odd y-zebra relaxation, symmetric 7-point prolongation and restriction, Galer-
kin approximation of coarse grid matrices, also on the coarsest grid relaxation is used as the solu-
tion process.

However, the user remains unaware of the underlying multigrid method.

The user supplies an absolute residual tolerance in the form of a bound of its |, -norm. The user may also
supply an initial approximation (alternatively, the zero solution is used asinitia approximation).

References

[1] Hemker, P.W., On the comparison of line-Gaul3 Seidel and ILU relaxations in multigrid algorithms.
In: Computational and asymptotic methods for boundary and interior layers. (J.J.H. Miller ed.) pp.
269-277, Boole press, 1982.

[2] Hemker, P.W., Wesseling, P. and Zeeuw, P.M. de, A portable vector code for autonomous multigrid
modules. In: PDE software: modules, interfaces and systems. (B. Engquist and T. Smedsaas eds.),
pp. 29-40, Procs. IFIP WG 2.5 working conference, North-Holland, 1984.

[3] Lioen, W.M. and Hemker P.W., Multigrid methods for elliptic PDEs, |. To appear in: Numerica
Aspects of Vector- and Parallel Processors. (H.J.J. te Riele ed.) Procs. 1985 -1986 (CWI, UVA,
THD) colloquium.

[4] Numerica Algorithms Group, NAG FORTRAN library manual - mark 11, 1984.

[5] Wessdling, P., A robust and efficient multigrid method. In: Multigrid methods (W. Hackbusch and
U. Trottenberg eds.), pp. 614-630, Procs. Koln-porz, 1981. Springer LNM 960, Springer-verlag,
1982.
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5. Parameters

NXF - INTEGER.

NYF - INTEGER.
On entry, NXF and NYF must specify the number of vertical and horizontal grid-lines respectively, on
the finest grid.
Unchanged on exit.

NF - INTEGER.
On entry, NF must specify the number of grid-points plus the number of horizontal grid-lines on the
finest grid.
Unchanged on exit.

LEVELS - INTEGER.
On entry, LEVELS must specify the number of levelsin the multigrid method.
Unchanged on exit.

NXC - INTEGER.

NYC - INTEGER.
On entry, NXC and NYC must specify the number of vertical and horizontal grid-lines respectively, on
the coarsest grid.
Unchanged on exit.

NM - INTEGER.
On entry, NM must specify the number of grid-points plus the number of horizontal grid-lines on all
grids together.
Unchanged on exit.

Note that the following relations should hold:

NXF, NYF, NXC, NYC=3

NF=(NXF+1) XNYF

1<LeveLs<min{log,(NXF-1),log,(NYF-1),12}

(NXC—1)=(NXF—1) x 21 ~H&ves

(NYC—1)=(NYF—1) x 21 t&ves

NMZ% (NXF—=1) (NYF-1) — % (Nxc-1) (NyCc—1) +
2[(NXF-1) + 2(NYF-1)] — [(NxCc—1) + 2(NYC-1)] +
2XLEVELS

For practical purposes: NM = % (NXF+3) (NYF+1)

The program checks the consistency of these data

Examples:
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LEVELS 2 3 4 5 6 7 8
NXC 3 3 3 3 3 3 3
NYC 3 3 3 3 3 3 3
NXF 5 9 17 33 65 129 257
NYF 5 9 17 33 65 129 257
NF 30 90 | 306 | 1122 | 4290 | 16770 | 66306
NM 42 | 132 | 438 | 1560 | 5850 | 22620 | 88926
LEVELS 2 3 4 5 6 7
NXC 5 5 5 5 5 5
NYC 5 5 5 5 5 5
NXF 9 17 33 65 129 257
NYF 9 17 33 65 129 257
NF 90 | 306 | 1122 | 4290 | 16770 | 66306
NM 120 | 426 | 1548 | 5838 | 22608 | 88914

A - REAL array of DIMENSION at least (NM*7)
Before entry, the first NXFxNYF+7 elements of A must contain the matrix corresponding to the finest
grid. If the routine has to be re-entered with ISTART =2, the first NM*7 elements of A should remain
unchanged, otherwise wrong results will be produced!

The easiest way for the user to fill the matrix A is writing a subroutine where the actual argument A is
handled as an adjustable array with dimensions (NXF, NYF, 7).

The 7-point difference molecule at the point with subscripts (1, J) is positioned in the x,y -plane as fol-
lows:

y
M1 _ _ A(L36) — A(,3,7)
J L ____ Al,33) —— ALY — A(,35)
|
|
I
F1| _ _ _ _ _ ___ __ :, __ AL A(Y2)
! !
! | |
! | |
| 1 1
0 -1 I +1 X

Important: the user hasto provide the matrix A only on the finest grid. The coarse grid matrices are com-
puted inside by the routine by means of Galerkin approximation.
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Important: the user has to take care that parts of the molecules outside the domain are initialized to zero
otherwise wrong results are produced.

On exit, the first NM* 7 elements of A contain the original information of the user-provided matrix A plus
its coarse grid approximations. However the information has in general become worthless to the user
(except for the re-entry case), because on exit the information still is stored according to the data
structure internally used by the routine.

Hence, the contents of A are altered on exit.

U - REAL array of DIMENSION at least (NM)
Only if the routine is entered with ISTART = 1 or re-entered with ISTART = 2, the first NXF+*NYF ele-
ments of U must contain an initial estimate for the iterative process. If ISTART = 0 no initialization of u
isnecessary (a zero initial estimate is assumed).

The easiest way for the user to fill the initial estimate is writing a subroutine where the actual argument u
is handled as an adjustable array with dimensions (NXF, NYF).

On successful exit, the first NXF*NYF elements of U contain the (approximate) numerical solution.

RHS - REAL array of DIMENSION at least (NM)
Before entry, the first NXF*NYF elements of RHS must contain the right-hand side of the equation.
If the routine has to be re-entered with ISTART = 2, the first (NXF+1)*NYF elements of RHS have to be
kept unchanged, otherwise wrong results will be produced!

The easiest way for the user to fill the right-hand side is writing a subroutine where the actual argument
RHS is handled as an adjustable array with dimensions (NXF, NYF).

Important: the user has to provide the right-hand side of the discretized equation only on the finest grid.

On exit, the first (NXF+1)*NYF elements of RHS contain the original information of the user-provided RHS.
However, the information has in general become worthless to the user (except for the re-entry case),
because on exit the information still is stored according to the data-structure internally used by the rou-
tine.

Hence, the contents of RHS are altered on exit.

DEC - REAL array of DIMENSION at least (NM*2).

Used as workspace.

Only if the routine has to be re-entered with ISTART = 2, the first NM*2 elements of DEC have to be
kept unchanged, otherwise wrong results will be produced!

On exit, the first NM* 2 elements of DEC contain the line LU-decompositions of A on al levels, used for
the zebra-relaxation. However, the information is in general worthless to the user (except for the re-
entry case), because on exit the information still is stored according to the data-structure internally
used by the routine.

US - REAL array of DIMENSION at least (NM).
Used as workspace.

ISTART - INTEGER.
On entry, ISTART must be set to 0, 1 or 2.

ISTART 0 meansthat theinitial estimate is zero, initialization of U is not necessary;
1 meansthat the user provides an initial estimate of the solutionin u;
2 meansthat the routine is re-entered after aformer call of the routine
(e.g. with another initial estimate or to refine the numerical solution found).

In this case:

NXF, NYF, NF, LEVELS, NXC, NYC, NM,
the first NM* 7 elements of A,
the first NM* 2 elements of DEC and
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the first (NXF+1)*NYF elements of RHS
should be kept unchanged, otherwise wrong results will be produced!
Unchanged on exit.

MAXIT - REAL.
TOL - REAL.
On entry, MAXIT must specify the maximum number of allowed multigrid iterations and TOL must
specify the tolerance desired by the user, where TOL is abound of thel , -norm of the residual.
If during the multigrid process either MAXIT iterations have been performed or the tolerance has been
reached, multigrid cycling is stopped.
Unchanged on exit.

P - INTEGER.

Q - INTEGER.

S - INTEGER.
These parameters allow the user to influence the multigrid strategy. Most probably a good choice isp
= 0, Q=s=1. On entry, P specifies the number of relaxations before the coarse grid correction; s
specifies the number of multigrid iterationsin the coarse grid correction; and Q specifies the number of
relaxations after the coarse grid correction. s defines the cycling structure: V-cycles are obtained by s
=1 and W-cycles by s = 2. By setting P = 0 and Q=s=1 (the recommended values that can also be
found in [1] and [5]) we obtain the so-called sawtooth multigrid cycle, which is also used by MGD1
and MGD5.
The values of P, @ and s are unchanged on exit.

IOUT - INTEGER array of DIMENSION at |east (5)
IOUT governs the amount of information about the solution process delivered to the user. Smaller
IouT-values mean less output. The user may select the unit-number on which this output is to appear
by a call of x04ABF. Before entry, the first 5 elements of 10UT must contain one of the following
values:

1ouT(1) confirmation of input data

none

IN IV

10UT(2) matrices on all levels and right hand side on highest level
matrix and right-hand side on highest level

none

IN 11 IV

10UT(3) matrix-decompositions on all levels
matrix-decomposition on highest level

none

IN I IV

norms of residuals, reduction factors, final solution, final residual

norms of residuals, reduction factors, final solution

norms of residuals, reduction factors (i.e. monitoring the convergence-behaviour the
same effect is obtained by setting IFAIL = 100 on entry)

none

10UT(4)

I 1w
PNW OFLN OFLN OF

|
o

1ouT(5) 1 thetime spent in various subroutines

>
< 0 none
The contents of 10UT are unchanged on exit.

RESNO - REAL.
On exit, RESNO contains the | , -norm of the residual.

IFAIL - INTEGER.
For this routine, the normal use of IFAIL is extended to control the printing of error and warning
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messages as well as specifying hard or soft failure (see [4], chapter PO1). On entry IFAIL must be set
to a value with the decimal expansion cbha, where each of the decimal digits c, b and a must have the

valueOor 1.

a = 0 gpecifieshard failure, otherwise soft failure;

b = 0 suppresseserror messages, otherwise error messages will be printed (see section 6);

¢ = 0 suppresseswarning messages, otherwise warning messages will be printed (see section 6).

For users not familiar with this parameter the recommended value is 110 (i.e. hard failure with all mes-
sages printed).
Unless the routine detects an error (see section 6), IFAIL contains O on exit.

6. Error indicatorsand warnings
Errors detected by the routine:-

For some errors the routine outputs an explanatory message on the current error message unit (see routine
X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL=1
one or more of the input parameters have been incorrectly set.

IFAIL =2
convergence, but MAXIT iterations performed without reaching ToL. This could be due to a poor
convergence-behaviour for this specific problem or to reaching roundoff level. In any case, the user is
advised to monitor the convergence-behaviour by choosing IFAIL or I0UT(4) appropriately.

IFAIL =3
the routine fails to converge. This routine is probably not suitable for this specific problem.

7. Auxiliary routines

Thisroutine calls the following NUMVEC library routines:

ADPROL, ARSPLT, CHANGE, CYCLES, DECOMP, EOZ2NOR, EORESI, EORSTR, EOZBRA, GALERK, INZBLK,
MATRHS, OUTDEC, OUTEOR, OUTMAT, OUTVEC, PO1AAF, PROLON, RAP, RESIDU, RESTRI, TIMING, VCCOMB,
VCSPLT, VL2NOR, X04AAF, X04ABF and YLDEC.

8. Timing

In scalar-mode the timing (for s = 1) is proportional to NM and approximately proportiona to
(NXF+3) x (NYF+1). In vector-mode the timing becomes better with increasing NM because of increasing
vector-lengths.

If the only concern would be an efficient vector-performance (mflop-rates) then it is advised to take the
longest side of the rectangular grid along the x-axis.

If on the other hand one is also interested in a good numerical-performance (convergence-rates) then one
has to take full account of the direction-sensitivity of the zebra-relaxation used. (viz. generally y-zebra
relaxation is more efficient if a stronger connection exists between pointsin the y-direction than in the x-
direction).

It is obvious, that both requirements can be in conflict with each other and that in some cases the latter
requirement is more important in order to obtain a much better overall-performance (efficiency)!

9. Storage

Internally declared arrays contain 9 REAL and 74 INTEGER €l ements.
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10. Accuracy

If the process converges, and MAXIT is large enough, the |, -norm of the residual becomes less than ToL.

11. Further comments

Labelled common blocks cpu and Pol are used by the routine and must therefore be avoided by users.

The user is strongly recommended to set IFAIL to obtain self-explanatory error-messages, and also moni-
toring information about the convergence-behaviour. The user may select the unit numbers on which this
output is to appear by calls of X04AAF (for error messages) or XO4ABF (for monitoring information) - see
section 13 for an example. Otherwise the default unit numbers will be used.

11.1. Vectorization infor mation

This program is entirely written in ANSI FORTRAN 77 and auto-vectorizes both on the CYBER 205
and the CRAY . On the CYBER 205 the compiler-options OPTimize and UNSafe will suffice.

In order to obtain a good (vector-)performance;

1

The data-structure is adapted internally to avoid the CYBER 205 stride problem during the most
costly part of amultigrid iteration step: the (zebra-)relaxation. Thisis done by re-storing the prob-
lem during the preparational phase on entry; performing the multigrid cycling phase; and re-
storing the numerical solution found according to the normal ordering of array-elements on exit.

The (line-wise) recurrencies which occur during the computation of the decompositions and the
solution of the tri-diagonal systems, that arise from the zebra-relaxation, are solved simultane-
oudly.

The (vector-) division during the zebra-relaxation is avoided by storage of the reciproca value
during the decomposition.

Wherever possible, the fact that the residual is zero on half the number of lines after a zebra-
relaxation is performed, is exploited (this is possible during the computation of the residual itself,
the norm of this special residual and the restriction of this special residual).

The number of page-faultsis minimized.

Wherever possible nested bo-loops are collapsed, (which is not always trivial, think of the
matrix-vector multiplications during the residual computation, or even better during the right-hand
side computation of the tri-diagonal systems arising from the zebra-relaxation).

In order to conform with ANSI FORTRAN 77:

7.

Nested Do-loop collapsing (point 6.) is done by explicit making use of over-indexing.

In order to survive large problems on the CY BER 205:

8.

The restriction on the iterative loop count (65535) is taken care of.

In order to fool the (CYBER 205) FORTRAN 200 compiler:

9.

Possible recurrencies are taken care of by implicit equivalencing: the same actual argument is
passed to two different dummy arguments.

This possible recurrency occurs when the first index exceeds the maximum rowindex in the actual
declaration, which is allowed within FORTRAN and therefore suspected by the CYBER 205
FORTRAN 200 compiler.

(The CRAY 1 FORTRAN compiler assumes implicitly that the programmer avoids such a situa-
tion. The CRAY 1 FORTRAN compiler is also provided with compiler-directives to force genera-
tion of vector-instructions or to turn the automatic vectorization off!)
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[lustrations of points 5, 6, 7 and 8 are shown in the subroutine "MATRHS" which is part of the exam-
ple program (see section 13.1).

12. Keywords

Elliptic PDEs,

Galerkin approximation,
Multigrid methods,
Sparse linear systems,
Zebrarelaxation.

13. Example

We solve the Poisson equation on the unit square with Dirichlet boundary conditions and the right hand
side constructed according to the exact solution x (1- x) + y (1-y). In this example the boundary con-
ditions are eliminated.

First we try 10 iterations with a zero initial approximation and if no divergence is found (using the soft
fail option) we try to refine the solution until the residual norm becomes lesser than 1071° using the
former approximation.

Note the calls to X04AAF and X04ABF prior to the call of MGzEB.

13.1. Program text

PROGRAM EXAMPL
INTEGER P, S, Q, 10UT(5)

C
C***************************************************************************
C
C Actual user provided DIMENSION statements. The arrays are declared
c in alabelled comMoN block in order to allow large-page mapping
C on the CYBER 205.
C
INTEGER NM
PARAMETER (NM=88926)
REAL A, RHS, DEC, U, US
COMMON /BIG/ A(NM*7), RHS(NM), DEC(NM* 2), U(NM), US(NM)
C
C User DATA statements
c
DATA NXC, NYC, NXF, NYF, NF, LEVELS /3, 3, 257, 257, 66306, 8/
DATAP, S, Q/0, 1,1/
DATA 10UT/1,0,0,1, 1/
C
C***************************************************************************
C
DATA NOUT /6/
c
OPEN(UNIT=NOUT, FILE=" OUTPUT ")
CALL X04AAF(1, NOUT)
CALL X04ABF(1, NOUT)
C

WRITE(NOUT, 99991)
99991 FORMAT( " 1MGZEB EXAMPLE PROGRAM RESULTS  ///)
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c
c Problem set up
C
CALL MATRHS(A, RHS, NXF, NYF, NOUT)
C
CALL TIMING(CPB)
C
c Approximate the solution of the linear system:
C perform 10 MGZEB iterations, using the soft fail option.
c
ISTART =0
MAXIT =10
TOoL  =0.0e0
IFAIL =111
C
CALL MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,
+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)
c
c If no divergence was found, we try to refine the solution until
C the residual norm < 1.0e-10.
C
IF (IFAIL.EQ.2) THEN
ISTART = 2
MAXIT =50
TOoL =1.0e-10
IFAIL =110
C
CALL MGZEB(NXF, NYF, NF, LEVELS, NXC, NYC, NM, A, U, RHS, DEC, US,
+ ISTART, MAXIT, TOL, P, S, Q, IOUT, RESNO, IFAIL)
ENDIF

CALL TIMING(CPE)
WRITE(NOUT, 99992) CPE—CPB
99992 FORMAT(//” TOTAL CPSECS USED BY MGZEB: ", F12.6)

c Test the IFAIL-parameter before printing the final solution.
IF (IFAIL.EQ.Q) CALL PRTSOL (U, NXF, NYF, NOUT)

STOP
END

SUBROUTINE MATRHS(A, RHS, NXF, NYF, NOUT)
REAL  A(NXF, NYF, 7), RHS(NXF, NYF)
INTEGER NXF, NYF, NOUT

MATRHS is a subroutine which fills the matrix and the right-hand
side. It is part of the example program.

The example is the Poisson eguation on the unit square with
Dirichlet boundary conditions and the exact solution is:

X * (XSIZE = X) +Y % (YSIZE - Y).

In this exampl e the boundary conditions are eliminated.

OO0O0O0O0O0O0O000O0
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REAL XSIZE, YSIZE, XH, YH, X, Y, B
REAL ZERO, ONE, TWO, FOUR

DATA ZERO, ONE, TWO, FOUR /0.0£0, 1.0e0, 2.0£0, 4.0e0/
XSIZE=ONE

YSIZE=ONE

XH=XSIZE/FLOAT(NXF+1)

YH=YSIZE/FLOAT(NYF+1)

c /(...+1) Because of elimination of boundary conditions
WRITE(NOUT, 99991) XSIZE, YSIZE, XH, YH
99991 FORMAT(™ POISSON PROBLEM: //” xsIzE =, 1PE13.6/" YSIZE = 7,
+ E13.6/" XH,YH=",2E13.6)
XYH4=FOUR* XH*YH
XY=XH/YH
YX=YH/XH

OO0O000000000000000000000000O0

(@]

Page 10

Initial filling of the matrix and the right-hand side neglecting
the boundaries.

DO 10 F=1,NYF

DO 10 I=1,NXF
A(1,3,1)=—xY
A(1,3,2)=zERO
A(1,3,3)=—YX
A(1,3,4)=TWO* (Y X+XY)
A(1,3,5)=-YX
A(1,3,6)=zZERO
A(1,3,7)=—XY
RHS(1,J)=XYH4

10 CONTINUE

In order to obtain maximum vector-performance we reformulate
loop 10 keeping the following pointsin mind:

. the nested bo-loop 10 is collapsible (by making use of
explicit over-indexing)

. we have to satisfy the CYBER 205 restriction on the
iterative loop count

. by not taking one single outer bo-loop: DO 10 KK=1,NF,65535
for al inner bo-loops 11 up to and including 18 we possibly
avoid afew page-faults

NF=NXF*NYF

DO 11 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(kKK—1))
DO 11 K=KK,KKE

A(K,1,1)=-XxY

CONTINUE

DO 12 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(KK—1))
DO 12 K=KK,KKE

A(K,1,2)=ZERO

12 CONTINUE
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13

14

15

16

17

18

DO 13 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(KK—1))
DO 13 K=KK,KKE

A(K,1,3)=—YX

CONTINUE

DO 14 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(kK—1))
DO 14 K=KK,KKE

A(K,1,4)=TWO* (YX+XY)

CONTINUE

DO 15 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(KK—1))
DO 15 K=KK,KKE

A(K,1,5)=-YX

CONTINUE

DO 16 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(kK—1))
DO 16 K=KK,KKE

A(K,1,6)=ZERO

CONTINUE

DO 17 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(kK—1))
DO 17 K=KK,KKE

A(K,1,7)=-XY

CONTINUE

DO 18 KK=1,NF,65535
KKE=(KK—1)+MINO(65535,NF—(KK—1))
DO 18 K=KK,KKE

RHS(K,1)=XYH4

CONTINUE

Correction for the Dirichlet boundary conditions corresponding
to the exact solution, X * (XSIZE—=X) + Y * (YSIZE-Y)

Note, that after this correction-process al parts of the
difference-molecul es outside the domain are initialized to zero!

MGZEB

OO0OO0OO0O0O0O0O000O0

Lower boundary

20

X=ZERO
DO 20 I=1,NXF
X=X+XH
B=Xx(XSIZE—X)
RHS(1,1)=RHS(1,1)-A(1,1,1)*B
A(1,1,1)=zErRO
CONTINUE

@]

Left and right-hand boundary

Y=ZERO
DO 30 =1,NYF
Y=Y+YH
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30

B=Y*(YSIZE-Y)
RHS(1,9)=RHS(1,9)-A(1,3,3)*B
A(1,3,3)=ZERO
RHS(NXF,J)=RHS(NXF,J)—A(NXF,J,5)* B
A(NXF,J3,5)=ZERO

CONTINUE

***_E|liptic PDEs

0

Upper boundary

40

X=ZERO

DO 40 I=1,NXF
X=X+XH
B=X*(XSIZE-X)
RHS(I,NYF)=RHS(I,NYF)—A(I,NYF,7)*B
A(1,NYF,7)=ZERO

CONTINUE

RETURN

END

SUBROUTINE PRTSOL (V, NX, NY, NOUT)
REAL  V(NX, NY)
INTEGER NX, NY

o000

This routine prints the solution v and is only part

of the example program.

WRITE(NOUT,1)

FORMAT(" 1THE NUMERICAL SOLUTION FOUND: " /)

IF (NX.LE.33 .AND. NY.LE.33) THEN
DO 10 =Nv,1,-1
WRITE(NOUT,2) J,(V(1,9),1=1,NX)

FORMAT(/~ Y—=INDEX=", 13, 1x, 1P10E12.3/(13%,1P10E12.3))

CONTINUE
ELSE
WRITE(NOUT,3)

FORMAT(" ISTOO LARGE TO FIT ON A FEW PAGES. ")

ENDIF
RETURN
END

13.2. Program data

None.
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13.3. Program results

M=ZEB EXAMPLE PROGRAM RESULTS

PO SSON PROBLEM

XSIZE = 1. 000000E+00
YSIZE = 1. 000000E+00
XH, YH =

3. 875969E- 03 3. 875969E- 03

MJULTI GRI D PROGRAM MGZEB, VERSI ON 24 MAY 1985

LEVELS NXC NYC NXF
8 3 3 257
MAXI T TOL
10 0. 000000E+00
| START I oJT | FAI
0 1 0 0 1 1 111

L2- NORM OF I NI TI AL RESI DUAL= 5. 87E+00

| TERATI ON NUMBER = 1
L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

AVERAGE REDUCTI ON FACTOR

| TERATI ON NUMBER = 2
L2- NORM OF RESI DUAL
REDUCTI ON FACTCR

AVERAGE REDUCTI ON FACTCOR

| TERATI ON NUMBER = 3
L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

AVERAGE REDUCTI ON FACTOR

| TERATI ON NUMBER = 4
L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

AVERAGE REDUCTI ON FACTOR

| TERATI ON NUMBER = 5
L2- NORM OF RESI DUAL
REDUCTI ON FACTCR

AVERAGE REDUCTI ON FACTCOR

o Ol

W

w ol

w N

w

NYF

257
P S
0 1

L

. 25E-03
. 95E- 04
. 95E- 04

. 61E-03
.06E-01
. 65E-02

. 76E-04
. 58E-01
. 61E-02

. 14E-04
. 72E-01
. 77E-02

. 07E-05
.77E-01
.07E-01

Q
1

NF
66306

NM
88926

MGZEB

Page 13



MGZEB

| TERATI ON NUMBER =
L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

6

AVERAGE REDUCTI ON FACTOR =

| TERATI ON NUMBER =
L2- NORM OF RESI DUAL
REDUCTI ON FACTCR

7

AVERAGE REDUCTI ON FACTOR =

| TERATI ON NUMBER =
L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

8

AVERAGE REDUCTI ON FACTOR =

| TERATI ON NUMBER =
L2- NORM OF RESI DUAL
REDUCTI ON FACTCR

9

AVERAGE REDUCTI ON FACTOR =

| TERATI ON NUMBER = 10

L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

AVERAGE REDUCTI ON FACTOR =

MAXI T | TERATI ONS PERFORMED,

ERROR DETECTED BY NUWEC LI BRARY ROUTI NE MZEB

TI M NGS:
CHANGE 0.
GALERKI N 0.
DECOVPOSI TI ON 0.
CYCLES ( TOTAL) 0.
RELAXATI ON 0.
RESI DUAL 0.
PROLONGATI ON 0.
RESTRI CTI ON 0.
NORM 0.

MJULTI GRI D PROGRAM MGZEB, VERSI ON 24 MAY 1985

Page 14

061340

154401

022052

599845

289824

098288

101042

087903

008126

w

6.
3.
2.

W THOUT REACHI NG TOL

. 06E-05
. 79E-01
. 32E-01

. 17E-05
.81E-01
.53E-01

. 45E- 06
. 81E-01
. 72E-01

. 7T0E- 06
.82E-01
. 88E-01

49E- 07
82E-01
02E-01

***_E|liptic PDEs



***_Elliptic PDEs MGZEB

LEVELS NXC  NYC NXF NYF NF NM
8 3 3 257 257 66306 88926
MAXI T TOL P S Q
50 1. 000000E- 10 0 1 1
ISTART | OUT | FAI L

2 1 0 0 1 1 110

L2- NORM OF I NI TI AL RESI DUAL= 6. 49E- 07

| TERATI ON NUMBER = 1

L2- NORM OF RESI DUAL . 48E- 07
REDUCTI ON FACTOR . 82E-01
AVERAGE REDUCTI ON FACTOR = 3. 82E-01

I
W N

| TERATI ON NUMBER = 2

L2- NORM OF RESI DUAL = . 50E-08
REDUCTI ON FACTCR = .83E-01
AVERAGE REDUCTI ON FACTOR = 3.83E-01

w ©

| TERATI ON NUMBER = 3

L2- NORM OF RESI DUAL = 3.64E-08
REDUCTI ON FACTOR = 3.83E-01
AVERAGE REDUCTI ON FACTOR = 3. 83E-01

| TERATI ON NUMBER = 4

L2- NORM OF RESI DUAL = 1.39E-08
REDUCTI ON FACTOR = 3.83E-01
AVERAGE REDUCTI ON FACTOR = 3.83E-01

| TERATI ON NUMBER = 5

L2- NORM OF RESI DUAL = 5.34E-09
REDUCTI ON FACTCR = 3.83E-01
AVERAGE REDUCTI ON FACTOR = 3. 83E-01

| TERATI ON NUMBER = 6

L2- NORM OF RESI DUAL = 2.05E-09
REDUCTI ON FACTOR = 3.84E-01
AVERAGE REDUCTI ON FACTOR = 3.83E-01

| TERATI ON NUMBER = 7

L2- NORM OF RESI DUAL = 7.88E-10
REDUCTI ON FACTOR = . 84E-01
AVERAGE REDUCTI ON FACTOR = 3.83E-01

w

| TERATI ON NUMBER = 8

L2- NORM OF RESI DUAL = . 03E-10
REDUCTI ON FACTCR = . 84E-01
AVERAGE REDUCTI ON FACTOR = 3. 83E-01

w w

| TERATI ON NUMBER = 9
L2- NORM OF RESI DUAL .17E-10
REDUCTI ON FACTOR = 3.85E-01

1
[En
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MGZEB

AVERAGE REDUCTI ON FACTCOR

| TERATI ON NUMBER = 10

L2- NORM OF RESI DUAL
REDUCTI ON FACTOR

AVERAGE REDUCTI ON FACTOR

TI' M NGS

CHANGE 0.
GALERKI N 0.
DECOVPCOSI TI ON 0.

CYCLES (TOTAL) 0.

RELAXATI ON 0.
RESI DUAL 0.
PROLONGATI ON 0.
RESTRI CTI ON 0.
NORM 0.

TOTAL CPSECS USED BY MGZEB:

007268

000000

000000

619218

290756

118021

101041

087911

008118

3. 84E-01

4. 49E-11
3. 85E-01
3. 84E-01

1.471958

THE NUMERI CAL SOLUTI ON FOUND

IS TOO LARGE TO FIT ON A FEW PAGES

Page 16 (last)
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